Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NOTCH inhibits osteoblast formation in inflammatory arthritis via noncanonical NF-κB
Hengwei Zhang, … , Brendan F. Boyce, Lianping Xing
Hengwei Zhang, … , Brendan F. Boyce, Lianping Xing
Published June 2, 2014
Citation Information: J Clin Invest. 2014;124(7):3200-3214. https://doi.org/10.1172/JCI68901.
View: Text | PDF
Research Article Bone biology

NOTCH inhibits osteoblast formation in inflammatory arthritis via noncanonical NF-κB

  • Text
  • PDF
Abstract

NOTCH-dependent signaling pathways are critical for normal bone remodeling; however, it is unclear if dysfunctional NOTCH activation contributes to inflammation-mediated bone loss, as observed in rheumatoid arthritis (RA) patients. We performed RNA sequencing and pathway analyses in mesenchymal stem cells (MSCs) isolated from transgenic TNF-expressing mice, a model of RA, to identify pathways responsible for decreased osteoblast differentiation. 53 pathways were dysregulated in MSCs from RA mice, among which expression of genes encoding NOTCH pathway members and members of the noncanonical NF-κB pathway were markedly elevated. Administration of NOTCH inhibitors to RA mice prevented bone loss and osteoblast inhibition, and CFU-fibroblasts from RA mice treated with NOTCH inhibitors formed more new bone in recipient mice with tibial defects. Overexpression of the noncanonical NF-κB subunit p52 and RELB in a murine pluripotent stem cell line increased NOTCH intracellular domain–dependent (NICD-dependent) activation of an RBPjκ reporter and levels of the transcription factor HES1. TNF promoted p52/RELB binding to NICD, which enhanced binding at the RBPjκ site within the Hes1 promoter. Furthermore, MSC-enriched cells from RA patients exhibited elevated levels of HES1, p52, and RELB. Together, these data indicate that persistent NOTCH activation in MSCs contributes to decreased osteoblast differentiation associated with RA and suggest that NOTCH inhibitors could prevent inflammation-mediated bone loss.

Authors

Hengwei Zhang, Matthew J. Hilton, Jennifer H. Anolik, Stephen L. Welle, Chen Zhao, Zhenqiang Yao, Xing Li, Zhiyu Wang, Brendan F. Boyce, Lianping Xing

×

Figure 3

Long-term of DAPT treatment prevented bone loss in TNF-Tg mice.

Options: View larger image (or click on image) Download as PowerPoint
Long-term of DAPT treatment prevented bone loss in TNF-Tg mice.
TNF-Tg m...
TNF-Tg mice were given with DAPT or vehicle as in Figure 2 for 3 months. (A) Representative μCT scans and morphometric data of BV/TV, trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) in L1 vertebrae. (B) Histology and histomorphometric analysis of BV/TV and number of osteoblasts (Ob) and osteoclasts (Oc) per bone surface (BS) in L1 vertebrae. (C) Calcein double-labeling in L1 vertebrae and analysis of dynamic parameters of bone formation: double labeled surface per bone surface (dLS/BS), mineral apposition rate (MAR), and bone formation rate (BFR). Original magnification, ×40. (D) Histology and histomorphometric analysis in the tibial metaphysis. Values are mean ± SD of 7–8 mice per group. (E) BM cells were cultured in the basal or osteoblast-inducing medium for 21 days in CFU colony formation assays. The number of CFU-F and CFU-ALP+ colonies was evaluated. (F) Expression of Alp and Runx2 in CFU-ALP+ colonies, assessed by qPCR. (G) BM cells were cultured with RANKL and M-CSF for 5 days in osteoclastogenic assays. The number of TRAP+ osteoclasts was counted. Values are mean ± SD of 4 dishes. Scale bars: 1 mm. *P < 0.05 vs. vehicle.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts