Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Tie1 deletion inhibits tumor growth and improves angiopoietin antagonist therapy
Gabriela D’Amico, … , Pipsa Saharinen, Kari Alitalo
Gabriela D’Amico, … , Pipsa Saharinen, Kari Alitalo
Published January 16, 2014
Citation Information: J Clin Invest. 2014;124(2):824-834. https://doi.org/10.1172/JCI68897.
View: Text | PDF
Research Article Oncology

Tie1 deletion inhibits tumor growth and improves angiopoietin antagonist therapy

  • Text
  • PDF
Abstract

The endothelial Tie1 receptor is ligand-less, but interacts with the Tie2 receptor for angiopoietins (Angpt). Angpt2 is expressed in tumor blood vessels, and its blockade inhibits tumor angiogenesis. Here we found that Tie1 deletion from the endothelium of adult mice inhibits tumor angiogenesis and growth by decreasing endothelial cell survival in tumor vessels, without affecting normal vasculature. Treatment with VEGF or VEGFR-2 blocking antibodies similarly reduced tumor angiogenesis and growth; however, no additive inhibition was obtained by targeting both Tie1 and VEGF/VEGFR-2. In contrast, treatment of Tie1-deficient mice with a soluble form of the extracellular domain of Tie2, which blocks Angpt activity, resulted in additive inhibition of tumor growth. Notably, Tie1 deletion decreased sprouting angiogenesis and increased Notch pathway activity in the postnatal retinal vasculature, while pharmacological Notch suppression in the absence of Tie1 promoted retinal hypervasularization. Moreover, substantial additive inhibition of the retinal vascular front migration was observed when Angpt2 blocking antibodies were administered to Tie1-deficient pups. Thus, Tie1 regulates tumor angiogenesis, postnatal sprouting angiogenesis, and endothelial cell survival, which are controlled by VEGF, Angpt, and Notch signals. Our results suggest that targeting Tie1 in combination with Angpt/Tie2 has the potential to improve antiangiogenic therapy.

Authors

Gabriela D’Amico, Emilia A. Korhonen, Andrey Anisimov, Georgia Zarkada, Tanja Holopainen, René Hägerling, Friedemann Kiefer, Lauri Eklund, Raija Sormunen, Harri Elamaa, Rolf A. Brekken, Ralf H. Adams, Gou Young Koh, Pipsa Saharinen, Kari Alitalo

×

Figure 5

Combinatorial targeting of Tie1 and Angpts results in greater inhibition of tumor growth than targeting either alone.

Options: View larger image (or click on image) Download as PowerPoint
Combinatorial targeting of Tie1 and Angpts results in greater inhibition...
(A) Experimental settings for induction of Tie1 deletion by tamoxifen (TAM) pellets, soluble extracellular domain of murine Tie2 (mTie2-ECD) or soluble murine Fc gamma receptor (mFc) expression, and LLC tumor implantation. (B) LLC tumor growth curves. (C) Tumor volume and weight at 18 days. (D) Vascular area, vessel length, and vessel width (expressed as a percentage of control plus mFc). Error bars denote SEM. *P < 0.05 versus control plus IgG; #P < 0.05 versus control plus mTie2-ECD.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts