Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Predicting time to ovarian carcinoma recurrence using protein markers
Ji-Yeon Yang, … , Gordon B. Mills, Roel G.W. Verhaak
Ji-Yeon Yang, … , Gordon B. Mills, Roel G.W. Verhaak
Published August 15, 2013
Citation Information: J Clin Invest. 2013;123(9):3740-3750. https://doi.org/10.1172/JCI68509.
View: Text | PDF | Erratum
Research Article Oncology

Predicting time to ovarian carcinoma recurrence using protein markers

  • Text
  • PDF
Abstract

Patients with ovarian cancer are at high risk of tumor recurrence. Prediction of therapy outcome may provide therapeutic avenues to improve patient outcomes. Using reverse-phase protein arrays, we generated ovarian carcinoma protein expression profiles on 412 cases from TCGA and constructed a PRotein-driven index of OVARian cancer (PROVAR). PROVAR significantly discriminated an independent cohort of 226 high-grade serous ovarian carcinomas into groups of high risk and low risk of tumor recurrence as well as short-term and long-term survivors. Comparison with gene expression–based outcome classification models showed a significantly improved capacity of the protein-based PROVAR to predict tumor progression. Identification of protein markers linked to disease recurrence may yield insights into tumor biology. When combined with features known to be associated with outcome, such as BRCA mutation, PROVAR may provide clinically useful predictions of time to tumor recurrence.

Authors

Ji-Yeon Yang, Kosuke Yoshihara, Kenichi Tanaka, Masayuki Hatae, Hideaki Masuzaki, Hiroaki Itamochi, Masashi Takano, Kimio Ushijima, Janos L. Tanyi, George Coukos, Yiling Lu, Gordon B. Mills, Roel G.W. Verhaak

×

Figure 1

Flow chart for construction and validation of PROVAR and for comparison with gene-driven models from Konstantinopoulos et al. (10), Kang et al. (11), and Verhaak et al. (12).

Options: View larger image (or click on image) Download as PowerPoint
Flow chart for construction and validation of PROVAR and for comparison ...
CV, cross-validation.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts