Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity
Yuki Kagoya, … , Yoichiro Iwakura, Mineo Kurokawa
Yuki Kagoya, … , Yoichiro Iwakura, Mineo Kurokawa
Published January 2, 2014
Citation Information: J Clin Invest. 2014;124(2):528-542. https://doi.org/10.1172/JCI68101.
View: Text | PDF
Research Article Oncology

Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity

  • Text
  • PDF
Abstract

Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy that originates from leukemia-initiating cells (LICs). The identification of common mechanisms underlying LIC development will be important in establishing broadly effective therapeutics for AML. Constitutive NF-κB pathway activation has been reported in different types of AML; however, the mechanism of NF-κB activation and its importance in leukemia progression are poorly understood. Here, we analyzed myeloid leukemia mouse models to assess NF-κB activity in AML LICs. We found that LICs, but not normal hematopoietic stem cells or non-LIC fractions within leukemia cells, exhibited constitutive NF-κB activity. This activity was maintained through autocrine TNF-α secretion, which formed an NF-κB/TNF-α positive feedback loop. LICs had increased levels of active proteasome machinery, which promoted the degradation of IκBα and further supported NF-κB activity. Pharmacological inhibition of the proteasome complex markedly suppressed leukemia progression in vivo. Conversely, enhanced activation of NF-κB signaling expanded LIC frequency within leukemia cell populations. We also demonstrated a strong correlation between NF-κB activity and TNF-α secretion in human AML samples. Our findings indicate that NF-κB/TNF-α signaling in LICs contributes to leukemia progression and provide a widely applicable approach for targeting LICs.

Authors

Yuki Kagoya, Akihide Yoshimi, Keisuke Kataoka, Masahiro Nakagawa, Keiki Kumano, Shunya Arai, Hiroshi Kobayashi, Taku Saito, Yoichiro Iwakura, Mineo Kurokawa

×

Figure 5

LICs have higher proteasome activity than non-LICs.

Options: View larger image (or click on image) Download as PowerPoint
LICs have higher proteasome activity than non-LICs.
(A and B) Immunoblot...
(A and B) Immunoblotting of IκBα in LICs and non-LICs (A). Protein levels were quantified with ImageJ software (B). Data representative of four experiments with SD are shown. (C) Relative mRNA expression of Nfkbia in LICs compared with that in non-LICs (n = 4 each). Error bars indicate SD. (D and E) Immunoblotting of IκBα in LICs and non-LICs. Cells were pretreated with MG132 for 1 hour and incubated for an additional hour with or without cycloheximide (CHX) (D). IκBα protein levels were quantified with ImageJ software, and the relative decrease in IκBα after cycloheximide treatment was calculated (n = 3 each). Error bars indicate SD (E). (F) Analysis of 20S proteasome activity quantified with fluorescence produced upon cleavage of the proteasome substrate SUC-LLVY-AMC (n = 4 each). Error bars indicate SD. (G) Relative mRNA expression of proteasome subunits in LICs compared with that in non-LICs (n = 4 each). Error bars indicate SD. (H) Schematic representation of the experiments. Each type of LIC was secondarily transplanted into mice. Bortezomib was injected twice weekly or injected once after incidence of leukemia. (I and J) Comparison of surface marker profiles in leukemic mice treated with bortezomib or vehicle. Representative FACS data (I) and relative percentages of Gr-1loc-Kithi fraction in MLL-ENL– or MOZ-TIF2–induced leukemic mice, and Gr-1loSca-1hi fraction in BCR-ABL/NUP98-HOXA9–induced leukemic mice are shown (n = 3 each) (J). Values of control mice were normalized to 100%. Error bars indicate SD. (K) Survival curves of mice in the experiments shown in H (n = 6 each).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts