Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI680

Differentiation of cultured keratinocytes promotes the adherence of Streptococcus pyogenes.

G L Darmstadt, P Fleckman, M Jonas, E Chi, and C E Rubens

Division of Infectious Disease, Department of Pediatrics CH-32, Children's Hospital & Medical Center, Seattle, WA 98105, USA.

Find articles by Darmstadt, G. in: PubMed | Google Scholar

Division of Infectious Disease, Department of Pediatrics CH-32, Children's Hospital & Medical Center, Seattle, WA 98105, USA.

Find articles by Fleckman, P. in: PubMed | Google Scholar

Division of Infectious Disease, Department of Pediatrics CH-32, Children's Hospital & Medical Center, Seattle, WA 98105, USA.

Find articles by Jonas, M. in: PubMed | Google Scholar

Division of Infectious Disease, Department of Pediatrics CH-32, Children's Hospital & Medical Center, Seattle, WA 98105, USA.

Find articles by Chi, E. in: PubMed | Google Scholar

Division of Infectious Disease, Department of Pediatrics CH-32, Children's Hospital & Medical Center, Seattle, WA 98105, USA.

Find articles by Rubens, C. in: PubMed | Google Scholar

Published January 1, 1998 - More info

Published in Volume 101, Issue 1 on January 1, 1998
J Clin Invest. 1998;101(1):128–136. https://doi.org/10.1172/JCI680.
© 1998 The American Society for Clinical Investigation
Published January 1, 1998 - Version history
View PDF
Abstract

Based on a consideration of the histopathology of nonbullous impetigo that shows localization of Streptococcus pyogenes to highly differentiated, subcorneal keratinocytes, we hypothesized that adherence of an impetigo strain of S. pyogenes would be promoted by terminal differentiation of keratinocytes. An assay was developed in which S. pyogenes adhered via pilus-like projections from the cell wall to the surface of cultured human keratinocytes in a time- and inoculum-dependent manner suggestive of a receptor-mediated process. Terminal differentiation of keratinocytes was induced by increasing the calcium concentration in the growth medium, and was confirmed by morphologic analysis using electron microscopy. Adherence of S. pyogenes was three and fourfold greater to keratinocytes differentiated in 1.0 and 1.5 mM calcium, respectively, compared with undifferentiated keratinocytes in 0.15 mM calcium. The presence of calcium during the adherence assay further enhanced adherence nearly twofold. Adherence occurred preferentially to sites of contact between adjacent keratinocytes, suggesting that the keratinocyte receptor may be a molecule involved in cell-to-cell adhesion. In contrast, nonpathogenic Streptococcus gordonii adhered poorly to keratinocytes regardless of their state of terminal differentiation, and adherence of a pharyngeal strain of S. pyogenes was twofold greater to undifferentiated than differentiated keratinocytes. This is the first report of in vitro adherence of S. pyogenes to keratinocytes in a manner that emulates human impetigo. Adherence of only the impetigo strain, and not the pharyngeal strain of S. pyogenes or the nonpathogenic S. gorgonii isolate, was promoted by keratinocyte differentiation. This result provides a model system for investigating the molecular pathogenesis of streptococcal skin infections.

Version history
  • Version 1 (January 1, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts