Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica
Hua Zhang, A.S. Verkman
Hua Zhang, A.S. Verkman
Published April 8, 2013
Citation Information: J Clin Invest. 2013;123(5):2306-2316. https://doi.org/10.1172/JCI67554.
View: Text | PDF
Research Article Ophthalmology

Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica

  • Text
  • PDF
Abstract

Eosinophils are abundant in inflammatory demyelinating lesions in neuromyelitis optica (NMO). We used cell culture, ex vivo spinal cord slices, and in vivo mouse models of NMO to investigate the role of eosinophils in NMO pathogenesis and the therapeutic potential of eosinophil inhibitors. Eosinophils cultured from mouse bone marrow produced antibody-dependent cell-mediated cytotoxicity (ADCC) in cell cultures expressing aquaporin-4 in the presence of NMO autoantibody (NMO-IgG). In the presence of complement, eosinophils greatly increased cell killing by a complement-dependent cell-mediated cytotoxicity (CDCC) mechanism. NMO pathology was produced in NMO-IgG–treated spinal cord slice cultures by inclusion of eosinophils or their granule toxins. The second-generation antihistamines cetirizine and ketotifen, which have eosinophil-stabilizing actions, greatly reduced NMO-IgG/eosinophil–dependent cytotoxicity and NMO pathology. In live mice, demyelinating NMO lesions produced by continuous intracerebral injection of NMO-IgG and complement showed marked eosinophil infiltration. Lesion severity was increased in transgenic hypereosinophilic mice. Lesion severity was reduced in mice made hypoeosinophilic by anti–IL-5 antibody or by gene deletion, and in normal mice receiving cetirizine orally. Our results implicate the involvement of eosinophils in NMO pathogenesis by ADCC and CDCC mechanisms and suggest the therapeutic utility of approved eosinophil-stabilizing drugs.

Authors

Hua Zhang, A.S. Verkman

×

Figure 2

Eosinophils produce NMO-IgG–dependent pathology by an ADCC mechanism in ex vivo spinal cord slice cultures.

Options: View larger image (or click on image) Download as PowerPoint
Eosinophils produce NMO-IgG–dependent pathology by an ADCC mechanism in ...
(A) Vibratome-cut spinal cord slices from mouse were cultured on a porous support for 7 days, followed by the addition of NMO-IgG and/or cells for 1 day, and then stained for AQP4, GFAP, MBP, and Iba1. Immunofluorescence of spinal cord slices (from Aqp4+/+ and Aqp4–/– mice) were incubated as indicated (20 μg/ml NMO-IgG or AQmabADCC, 107 eosinophils). Pathology scores are summarized at the bottom (SEM; 6–11 slices per condition; *P < 0.001 versus the control group; 1-way ANOVA). Scale bar: 500 μm. (B) Eosinophil degranulation by PAF produces NMO-like pathology (107 eosinophils, 10 μg/ml PAF) (SEM; 5 slices per condition; *P < 0.01). Scale bar: 500 μm. Experiments were replicated 3 times.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts