Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
DISC1 and SLC12A2 interaction affects human hippocampal function and connectivity
Joseph H. Callicott, … , Guo-li Ming, Daniel R. Weinberger
Joseph H. Callicott, … , Guo-li Ming, Daniel R. Weinberger
Published June 10, 2013
Citation Information: J Clin Invest. 2013;123(7):2961-2964. https://doi.org/10.1172/JCI67510.
View: Text | PDF
Brief Report Neuroscience

DISC1 and SLC12A2 interaction affects human hippocampal function and connectivity

  • Text
  • PDF
Abstract

Hippocampal development is coordinated by both extracellular factors like GABA neurotransmission and intracellular components like DISC1. We previously reported that SLC12A2-dependent GABA depolarization and DISC1 coregulate hippocampal neuronal development, and 2 SNPs in these genes linked to mRNA expression interactively increase schizophrenia risk. Using functional MRI, we now confirm this biological interaction in vivo by showing in 2 independent samples of healthy individuals (total N = 349) that subjects homozygous for both risk alleles evince dramatically decreased hippocampal area activation (Cohen’s d = 0.78) and connectivity (d = 0.57) during a recognition memory task. These data highlight the importance of epistatic models in understanding genetic association with complex brain phenotypes.

Authors

Joseph H. Callicott, Emer L. Feighery, Venkata S. Mattay, Michael G. White, Qiang Chen, David A.A. Baranger, Karen F. Berman, Bai Lu, Hongjun Song, Guo-li Ming, Daniel R. Weinberger

×

Full Text PDF | Download (623.21 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts