Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis
Jonathan Cools-Lartigue, … , Paul Kubes, Lorenzo Ferri
Jonathan Cools-Lartigue, … , Paul Kubes, Lorenzo Ferri
Published July 1, 2013
Citation Information: J Clin Invest. 2013;123(8):3446-3458. https://doi.org/10.1172/JCI67484.
View: Text | PDF
Research Article Oncology

Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis

  • Text
  • PDF
Abstract

The majority of patients with cancer undergo at least one surgical procedure as part of their treatment. Severe postsurgical infection is associated with adverse oncologic outcomes; however, the mechanisms underlying this phenomenon are unclear. Emerging evidence suggests that neutrophils, which function as the first line of defense during infections, facilitate cancer progression. Neutrophil extracellular traps (NETs) are extracellular neutrophil-derived DNA webs released in response to inflammatory cues that trap and kill invading pathogens. The role of NETs in cancer progression is entirely unknown. We report that circulating tumor cells become trapped within NETs in vitro under static and dynamic conditions. In a murine model of infection using cecal ligation and puncture, we demonstrated microvascular NET deposition and consequent trapping of circulating lung carcinoma cells within DNA webs. NET trapping was associated with increased formation of hepatic micrometastases at 48 hours and gross metastatic disease burden at 2 weeks following tumor cell injection. These effects were abrogated by NET inhibition with DNAse or a neutrophil elastase inhibitor. These findings implicate NETs in the process of cancer metastasis in the context of systemic infection and identify NETs as potential therapeutic targets.

Authors

Jonathan Cools-Lartigue, Jonathan Spicer, Braedon McDonald, Stephen Gowing, Simon Chow, Betty Giannias, France Bourdeau, Paul Kubes, Lorenzo Ferri

×

Figure 5

NETs trap both human and murine tumor cells in vitro.

Options: View larger image (or click on image) Download as PowerPoint
NETs trap both human and murine tumor cells in vitro.
(A) Under static c...
(A) Under static conditions, H59 and A549 cells demonstrate increased adhesion to neutrophil monolayers stimulated with PMA (800 nM) compared with unstimulated neutrophils. Addition of DNAse 1 (1,000 U) or pretreatment of neutrophils with NEi (5 μM) results in levels of adhesion comparable to control. (B) Tumor cells were perfused over neutrophil monolayers at shear rates of 1 dyne/cm/s–1. H59 and A549 cells demonstrate increased adhesion to neutrophils after stimulation with PMA (800 nM) compared with controls. This was abrogated by addition of DNAse 1 (1,000 U) or pretreatment of neutrophils with NEi (5 μM). Data are presented as mean ± SEM from n = 2–4 separate experiments. ***P < 0.01 versus control, DNAse, and NEi. #P < 0.05 versus control. Significance was determined using 1-way ANOVA with Tukey’s HSD post-hoc analysis. (C) Confocal imaging reveals that after PMA stimulation, A549 cells (red) become trapped within webs of extracellular DNA (green) in proximity to neutrophils (blue). (D) Scanning electron microscopy of A549- and PMA-stimulated neutrophils (800 nM) (original magnification, ×3,000). After PMA stimulation, neutrophils flatten (white arrow) and extrude strands consistent with NETs. Strands encompass a cluster of adherent tumor cells (black arrow). (E) Scanning electron microscopy demonstrates that NETs are in direct contact with adherent A549 tumor cells (original magnification, ×3,500). Scale bars: 40 μm (confocal microscopy); 5 μm (electron microscopy). See also Supplemental Figures 2 and 3.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts