Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Discovering naturally processed antigenic determinants that confer protective T cell immunity
Pavlo Gilchuk, Charles T. Spencer, Stephanie B. Conant, Timothy Hill, Jennifer J. Gray, Xinnan Niu, Mu Zheng, John J. Erickson, Kelli L. Boyd, K. Jill McAfee, Carla Oseroff, Sine R. Hadrup, Jack R. Bennink, William Hildebrand, Kathryn M. Edwards, James E. Crowe Jr., John V. Williams, Søren Buus, Alessandro Sette, Ton N.M. Schumacher, Andrew J. Link, Sebastian Joyce
Pavlo Gilchuk, Charles T. Spencer, Stephanie B. Conant, Timothy Hill, Jennifer J. Gray, Xinnan Niu, Mu Zheng, John J. Erickson, Kelli L. Boyd, K. Jill McAfee, Carla Oseroff, Sine R. Hadrup, Jack R. Bennink, William Hildebrand, Kathryn M. Edwards, James E. Crowe Jr., John V. Williams, Søren Buus, Alessandro Sette, Ton N.M. Schumacher, Andrew J. Link, Sebastian Joyce
View: Text | PDF
Technical Advance Immunology

Discovering naturally processed antigenic determinants that confer protective T cell immunity

  • Text
  • PDF
Abstract

CD8+ T cells (TCD8) confer protective immunity against many infectious diseases, suggesting that microbial TCD8 determinants are promising vaccine targets. Nevertheless, current T cell antigen identification approaches do not discern which epitopes drive protective immunity during active infection — information that is critical for the rational design of TCD8-targeted vaccines. We employed a proteomics-based approach for large-scale discovery of naturally processed determinants derived from a complex pathogen, vaccinia virus (VACV), that are presented by the most frequent representatives of four major HLA class I supertypes. Immunologic characterization revealed that many previously unidentified VACV determinants were recognized by smallpox-vaccinated human peripheral blood cells in a variegated manner. Many such determinants were recognized by HLA class I–transgenic mouse immune TCD8 too and elicited protective TCD8 immunity against lethal intranasal VACV infection. Notably, efficient processing and stable presentation of immune determinants as well as the availability of naive TCD8 precursors were sufficient to drive a multifunctional, protective TCD8 response. Our approach uses fundamental insights into T cell epitope processing and presentation to define targets of protective TCD8 immunity within human pathogens that have complex proteomes, suggesting that this approach has general applicability in vaccine sciences.

Authors

Pavlo Gilchuk, Charles T. Spencer, Stephanie B. Conant, Timothy Hill, Jennifer J. Gray, Xinnan Niu, Mu Zheng, John J. Erickson, Kelli L. Boyd, K. Jill McAfee, Carla Oseroff, Sine R. Hadrup, Jack R. Bennink, William Hildebrand, Kathryn M. Edwards, James E. Crowe Jr., John V. Williams, Søren Buus, Alessandro Sette, Ton N.M. Schumacher, Andrew J. Link, Sebastian Joyce

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 661 47
PDF 116 17
Figure 458 5
Table 136 0
Supplemental data 70 3
Citation downloads 95 0
Totals 1,536 72
Total Views 1,608
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts