Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium
Stefan Frantz, … , Richard T. Lee, Ralph A. Kelly
Stefan Frantz, … , Richard T. Lee, Ralph A. Kelly
Published August 1, 1999
Citation Information: J Clin Invest. 1999;104(3):271-280. https://doi.org/10.1172/JCI6709.
View: Text | PDF
Article

Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium

  • Text
  • PDF
Abstract

Expression of innate immune response proteins, including IL-1β, TNF, and the cytokine-inducible isoform of nitric oxide synthase (iNOS), have been documented in the hearts of humans and experimental animals with heart failure regardless of etiology, although the proximal events leading to their expression are unknown. Noting that expression of a human homologue of Drosophila Toll, a proximal innate immunity transmembrane signaling protein in the fly, now termed human Toll-like receptor 4 (hTLR4), appeared to be relatively high in the heart, we examined TLR4 mRNA and protein abundance in isolated cellular constituents of cardiac muscle and in normal and abnormal murine, rat, and human myocardium. TLR4 expression levels in cardiac myocytes and in coronary microvascular endothelial cells could be enhanced by either LPS or IL-1β, an effect inhibited by the oxygen radical scavenger PDTC. Transfection of a constitutively active TLR4 construct, CD4/hTLR4, resulted in activation of a nuclear factor-κB reporter construct, but not of an AP-1 or an iNOS reporter construct, in cardiac myocytes. In normal murine, rat, and human myocardium, TLR4 expression was diffuse, and presumably cytoplasmic, in cardiac myocytes. However, in remodeling murine myocardium remote from sites of ischemic injury and in heart tissue from patients with idiopathic dilated cardiomyopathy, focal areas of intense TLR4 staining were observed in juxtaposed regions of 2 or more adjacent myocytes; this staining was not observed in control myocardium. Increased expression and signaling by TLR4, and perhaps other Toll homologues, may contribute to the activation of innate immunity in injured myocardium.

Authors

Stefan Frantz, Lester Kobzik, Young-Dae Kim, Ryuji Fukazawa, Ruslan Medzhitov, Richard T. Lee, Ralph A. Kelly

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 1,330 93
PDF 61 37
Figure 352 16
Citation downloads 72 0
Totals 1,815 146
Total Views 1,961
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts