Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Nanoparticle-based flow virometry for the analysis of individual virions
Anush Arakelyan, … , Leonid Margolis, Jean-Charles Grivel
Anush Arakelyan, … , Leonid Margolis, Jean-Charles Grivel
Published August 8, 2013
Citation Information: J Clin Invest. 2013;123(9):3716-3727. https://doi.org/10.1172/JCI67042.
View: Text | PDF
Technical Advance AIDS/HIV

Nanoparticle-based flow virometry for the analysis of individual virions

  • Text
  • PDF
Abstract

While flow cytometry has been used to analyze the antigenic composition of individual cells, the antigenic makeup of viral particles is still characterized predominantly in bulk. Here, we describe a technology, “flow virometry,” that can be used for antigen detection on individual virions. The technology is based on binding magnetic nanoparticles to virions, staining the virions with monoclonal antibodies, separating the formed complexes with magnetic columns, and characterizing them with flow cytometers. We used this technology to study the distribution of two antigens (HLA-DR and LFA-1) that HIV-1 acquires from infected cells among individual HIV-1 virions. Flow virometry revealed that the antigenic makeup of virions from a single preparation is heterogeneous. This heterogeneity could not be detected with bulk analysis of viruses. Moreover, in two preparations of the same HIV-1 produced by different cells, the distribution of antigens among virions was different. In contrast, HIV-1 of two different HIV-1 genotypes replicating in the same cells became somewhat antigenically similar. This nanotechnology allows the study of virions in bodily fluids without virus propagation and in principle is not restricted to the analysis of HIV, but can be applied to the analysis of the individual surface antigenic makeup of any virus.

Authors

Anush Arakelyan, Wendy Fitzgerald, Leonid Margolis, Jean-Charles Grivel

×

Figure 4

Distribution of cellular antigens on HIV-1 virions.

Options: View larger image (or click on image) Download as PowerPoint
Distribution of cellular antigens on HIV-1 virions.
HIV-1LAI.04 and HIV-...
HIV-1LAI.04 and HIV-1SF162 produced by PBMCs was captured by 2G12-MNPs and visualized with labeled VRC01. (A–C) Following capture, the two cellular antigens were revealed on HIV virions with labeled monoclonal antibodies against LFA-1 and HLA-DR. (A) 2G12-MNPs were incubated with virus-free culture medium and stained with anti–LFA-1–specific antibodies (left panel), anti–HLA-DR–specific antibodies (center panel), or costained for LFA-1 and HLA-DR (right panel). Plots show the positions of the gates used in the gating strategy shown in Figure 2A. Note the low nonspecific binding of antibodies to 2G12-MNPs. (B and C) Staining of HIV-1LAI.04-2G12-MNP complexes (B) and HIV-1SF162-2G12-MNP complexes (C) for LFA-1 (left panels), HLA-DR (center panels), or costaining for both antigens (right panels). Note the heterogeneity of the viral preparation regarding these two cellular antigens. Representative experiments of three to six replicate experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts