Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models
Xuezhi Dai, … , Jane H. Buckner, David J. Rawlings
Xuezhi Dai, … , Jane H. Buckner, David J. Rawlings
Published April 24, 2013
Citation Information: J Clin Invest. 2013;123(5):2024-2036. https://doi.org/10.1172/JCI66963.
View: Text | PDF
Research Article

A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models

  • Text
  • PDF
Abstract

Multiple autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, Graves disease, and systemic lupus erythematosus, are associated with an allelic variant of protein tyrosine phosphatase nonreceptor 22 (PTPN22), which encodes the protein LYP. To model the human disease-linked variant LYP-R620W, we generated knockin mice expressing the analogous mutation, R619W, in the murine ortholog PEST domain phosphatase (PEP). In contrast with a previous report, we found that this variant exhibits normal protein stability, but significantly alters lymphocyte function. Aged knockin mice exhibited effector T cell expansion and transitional, germinal center, and age-related B cell expansion as well as the development of autoantibodies and systemic autoimmunity. Further, PEP-R619W affected B cell selection and B lineage–restricted variant expression and was sufficient to promote autoimmunity. Consistent with these features, PEP-R619W lymphocytes were hyperresponsive to antigen-receptor engagement with a distinct profile of tyrosine-phosphorylated substrates. Thus, PEP-R619W uniquely modulates T and B cell homeostasis, leading to a loss in tolerance and autoimmunity.

Authors

Xuezhi Dai, Richard G. James, Tania Habib, Swati Singh, Shaun Jackson, Socheath Khim, Randall T. Moon, Denny Liggitt, Alejandro Wolf-Yadlin, Jane H. Buckner, David J. Rawlings

×

Figure 1

PEP-R619W and LYP-R620W exhibit no deficit in protein stability.

Options: View larger image (or click on image) Download as PowerPoint
PEP-R619W and LYP-R620W exhibit no deficit in protein stability.
(A) PEP...
(A) PEP expression in thymocytes and splenic B cells from T/C, T/T, and WT littermates. Cell lysates were subjected to Western blot using anti–PEP-P1, anti–PEP-P2, or anti-actin antibodies. Lower panel shows serial dilution of thymocyte lysates. (B) LYP expression in purified CD3+ T cells from healthy T/T or T/C or control (C/C) subjects. Lysates were blotted using 2 alternative anti-LYP antibodies and probed with anti-TFIIB for protein loading controls. 293T cells overexpressing LYP were used as a positive control. (C) Analysis of PEP half-life in Ramos B cells overexpressing HA-tagged WT or PEP-R619W. Cells were treated with 50 μM CHX for times indicated, and cell lysates were blotted using anti-HA, anti–PEP-P2, and anti-actin antibodies. (D) WT and PEP-R619W exhibit similar calpain-1–mediated protein degradation. Cell lysates from Ramos B cells overexpressing FLAG-tagged WT or PEP-R619W were IP with anti-FLAG antibody, incubated with 0.05 U calpain-1 for indicated times, and subjected to Western blot with anti-FLAG or anti–PEP-P2 antibodies. Graphic displays relative band intensity versus time for each analysis. Numbers denote PEP/actin, LYP/TFIIB, or HA/actin ratios. Data shown are representative of at least 3 independent experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts