Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Ubiquitylation and the pathogenesis of hypertension
David H. Ellison
David H. Ellison
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):546-548. https://doi.org/10.1172/JCI66882.
View: Text | PDF
Commentary

Ubiquitylation and the pathogenesis of hypertension

  • Text
  • PDF
Abstract

Liddle syndrome is monogenic hypertension caused by mutations in the epithelial Na+ channel (ENaC) that interfere with its ubiquitylation by Nedd4-2. In this issue, Ronzaud and colleagues found that deleting Nedd4-2 from kidney tubules in adult mice led to ENaC accumulation, but not at the plasma membrane, as predicted from current models. Instead, abundance of the sodium chloride transporter NCC increased at the plasma membrane, and the mice have some features of increased NCC activity. Together, the results suggest that defective ubiquitylation of ENaC by Nedd4-2 may not fully explain Liddle syndrome and that Nedd4-2 modulates NCC more strongly.

Authors

David H. Ellison

×

Full Text PDF | Download (768.14 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts