Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
FcγRIIb mediates amyloid-β neurotoxicity and memory impairment in Alzheimer’s disease
Tae-In Kam, … , Junying Yuan, Yong-Keun Jung
Tae-In Kam, … , Junying Yuan, Yong-Keun Jung
Published June 10, 2013
Citation Information: J Clin Invest. 2013;123(7):2791-2802. https://doi.org/10.1172/JCI66827.
View: Text | PDF
Research Article Neuroscience

FcγRIIb mediates amyloid-β neurotoxicity and memory impairment in Alzheimer’s disease

  • Text
  • PDF
Abstract

Amyloid-β (Aβ) induces neuronal loss and cognitive deficits and is believed to be a prominent cause of Alzheimer’s disease (AD); however, the cellular pathology of the disease is not fully understood. Here, we report that IgG Fcγ receptor II-b (FcγRIIb) mediates Aβ neurotoxicity and neurodegeneration. We found that FcγRIIb is significantly upregulated in the hippocampus of AD brains and neuronal cells exposed to synthetic Aβ. Neuronal FcγRIIb activated ER stress and caspase-12, and Fcgr2b KO primary neurons were resistant to synthetic Aβ-induced cell death in vitro. Fcgr2b deficiency ameliorated Aβ-induced inhibition of long-term potentiation and inhibited the reduction of synaptic density by naturally secreted Aβ. Moreover, genetic depletion of Fcgr2b rescued memory impairments in an AD mouse model. To determine the mechanism of action of FcγRIIb in Aβ neurotoxicity, we demonstrated that soluble Aβ oligomers interact with FcγRIIb in vitro and in AD brains, and that inhibition of their interaction blocks synthetic Aβ neurotoxicity. We conclude that FcγRIIb has an aberrant, but essential, role in Aβ-mediated neuronal dysfunction.

Authors

Tae-In Kam, Sungmin Song, Youngdae Gwon, Hyejin Park, Ji-Jing Yan, Isak Im, Ji-Woo Choi, Tae-Yong Choi, Jeongyeon Kim, Dong-Keun Song, Toshiyuki Takai, Yong-Chul Kim, Key-Sun Kim, Se-Young Choi, Sukwoo Choi, William L. Klein, Junying Yuan, Yong-Keun Jung

×

Figure 3

Interaction of FcγRIIb with Aβ1-42.

Options: View larger image (or click on image) Download as PowerPoint
Interaction of FcγRIIb with Aβ1-42.
 
(A) In vitro binding of FcγRIIb-ED...
(A) In vitro binding of FcγRIIb-ED protein to cell-derived Aβ. Purified GST or hFcγRIIb-ED protein was incubated with CHO- or 7PA2-CM for 6 hours and then immunoprecipitated with anti-GST or anti-FcγRIIb antibody. The precipitates were analyzed by Western blotting. L.C., light chain. (B) Direct interaction of FcγRIIb-ED with Aβ1-42 in SPR analysis. BSA or oligomeric Aβ1-42 was immobilized and the interactions with hFcγRIIb-ED were analyzed using Biacore 3000. (C) Interaction of FcγRIIb with oligomeric Aβ1-42 in AD patients. Hippocampal extracts from AD patients and controls (C) were subjected to immunoprecipitation assays using IgG or Nu-1 antibody, and the precipitates were analyzed with Western blotting. Asterisk indicates nonspecific signal, which differs in size from the Aβ monomer. (D) Computational simulation showing the structure of the FcγRIIb-Aβ1-42 complex. The N terminus of Aβ1-42 and IgG-binding region of hFcγRIIb were handled using the Affinity program. (E) Inhibition of Aβ1-42-induced reporter activation of the FcγRIIb-ED/CD40-Luc chimera by Aβ1-9 or FcγRIIb107-114. Synthetic peptides spanning the predicted interaction regions of FcγRIIb and Aβ1-42 and their mutants are represented (top). The reporter assay was performed with or without synthetic peptides with a molar ratio of 1:3 (bottom). (F) Binding of Aβ1-42 to the Ig2 domain of FcγRIIb. Domain structures of FcγRIIb and its deletion constructs are presented (top). HEK293T cells were transfected with the constructs and treated with 1 μM Aβ1-42 for 1 hour. Cell lysates were subjected to immunoprecipitation analysis using Aβ antibody or preimmune (Pre), and the precipitates were analyzed with Western blotting. Expression of each FcγRIIb protein was checked in whole cell lysates. IP, immunoprecipitation.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts