Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Macrophages eliminate circulating tumor cells after monoclonal antibody therapy
Nuray Gül, … , Paul Kubes, Marjolein van Egmond
Nuray Gül, … , Paul Kubes, Marjolein van Egmond
Published January 16, 2014
Citation Information: J Clin Invest. 2014;124(2):812-823. https://doi.org/10.1172/JCI66776.
View: Text | PDF
Research Article Immunology

Macrophages eliminate circulating tumor cells after monoclonal antibody therapy

  • Text
  • PDF
Abstract

The use of monoclonal antibodies (mAbs) as therapeutic tools has increased dramatically in the last decade and is now one of the mainstream strategies to treat cancer. Nonetheless, it is still not completely understood how mAbs mediate tumor cell elimination or the effector cells that are involved. Using intravital microscopy, we found that antibody-dependent phagocytosis (ADPh) by macrophages is a prominent mechanism for removal of tumor cells from the circulation in a murine tumor cell opsonization model. Tumor cells were rapidly recognized and arrested by liver macrophages (Kupffer cells). In the absence of mAbs, Kupffer cells sampled tumor cells; however, this sampling was not sufficient for elimination. By contrast, antitumor mAb treatment resulted in rapid phagocytosis of tumor cells by Kupffer cells that was dependent on the high-affinity IgG-binding Fc receptor (FcγRI) and the low-affinity IgG-binding Fc receptor (FcγRIV). Uptake and intracellular degradation were independent of reactive oxygen or nitrogen species production. Importantly, ADPh prevented the development of liver metastases. Tumor cell capture and therapeutic efficacy were lost after Kupffer cell depletion. Our data indicate that macrophages play a prominent role in mAb-mediated eradication of tumor cells. These findings may help to optimize mAb therapeutic strategies for patients with cancer by helping us to aim to enhance macrophage recruitment and activity.

Authors

Nuray Gül, Liane Babes, Kerstin Siegmund, Rianne Korthouwer, Marijn Bögels, Rens Braster, Gestur Vidarsson, Timo L.M. ten Hagen, Paul Kubes, Marjolein van Egmond

×

Figure 1

Opsonization with specific mAbs results in rapid phagocytosis of tumor cells by macrophages.

Options: View larger image (or click on image) Download as PowerPoint
Opsonization with specific mAbs results in rapid phagocytosis of tumor c...
(A) Intravital microscopy images in time series (minutes) of B16F10 cells (red) and Kupffer cells (blue) in livers of mice that were treated with either vehicle or TA99 mAbs. Arrowheads indicate contact sites between Kupffer cells and tumor cells. Asterisks indicate uptake of small tumor cell particles. Scale bar: 25 μm. (B) Percentage of B16F10 tumor cells that interact with Kupffer cells. (C) Percentage phagocytosis of B16F10 tumor cells by Kupffer cells. (D) Percentage of B16F10 tumor cells that interact with Kupffer cells in wild-type mice or FcγRI/IV–/– mice. (E) Percentage phagocytosis of B16F10 tumor cells by Kupffer cells in wild-type mice or FcγRI/IV–/– mice. (F and G) In vitro live-cell microscopy of DiO-labeled (green) macrophages and DiI-labeled (red) B16F10 cells in the presence of (F) isotype or (G) TA99. Scale bar: 10 μm. Time points are indicated (minutes). The asterisk in F indicates tumor cell division. (H) In vitro microscopy images after 24 hours. Scale bar: 50 μm. Data are representative of at least 3 independent experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts