Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Planar cell polarity genes control the connectivity of enteric neurons
Valentina Sasselli, … , André M. Goffinet, Vassilis Pachnis
Valentina Sasselli, … , André M. Goffinet, Vassilis Pachnis
Published March 8, 2013
Citation Information: J Clin Invest. 2013;123(4):1763-1772. https://doi.org/10.1172/JCI66759.
View: Text | PDF
Research Article Gastroenterology

Planar cell polarity genes control the connectivity of enteric neurons

  • Text
  • PDF
Abstract

A highly complex network of intrinsic enteric neurons is required for the digestive and homeostatic functions of the gut. Nevertheless, the genetic and molecular mechanisms that regulate their assembly into functional neuronal circuits are currently unknown. Here we report that the planar cell polarity (PCP) genes Celsr3 and Fzd3 are required during murine embryogenesis to specifically control the guidance and growth of enteric neuronal projections relative to the longitudinal and radial gut axes. Ablation of these genes disrupts the normal organization of nascent neuronal projections, leading to subtle changes of axonal tract configuration in the mature enteric nervous system (ENS), but profound abnormalities in gastrointestinal motility. Our data argue that PCP-dependent modules of connectivity established at early stages of enteric neurogenesis control gastrointestinal function in adult animals and provide the first evidence that developmental deficits in ENS wiring may contribute to the pathogenesis of idiopathic bowel disorders.

Authors

Valentina Sasselli, Werend Boesmans, Pieter Vanden Berghe, Fadel Tissir, André M. Goffinet, Vassilis Pachnis

×

Figure 2

Deficits in the organization of neuronal processes in Celsr3 and Fzd3 mutant guts.

Options: View larger image (or click on image) Download as PowerPoint
Deficits in the organization of neuronal processes in Celsr3 and Fzd3 mu...
(A–C) Grayscale inverted images of gut preparations from E12.5 control (A), Celsr3–/– (B), and Fzd3–/– (C) embryos immunostained for TuJ1. Arrows indicate the position of the most caudally located neurons. (D–F) High magnification of equivalent midgut areas from preparations shown in A–C. Red arrows in D indicate the prominent longitudinal tracts found in control midguts, which were absent in mutant embryos. (G–I) Analysis of the distribution of the developing neuronal plexus in either one of the 12 directions (15° wide from –90° to +90°). The gray dotted line indicates the hypothetical case in which TuJ1+ neuronal tracts were organized randomly (equal distribution over all bins, 180°/12 = 0.083). A Gaussian fit was used to identify the dominant direction in each genotype. In mutants, the plexus orientation deviates less from the random order and is significantly different from the control (N = 6 per genotype). Two-way ANOVA, P < 0.0001; Bonferroni’s post-hoc test, *P < 0.05, **P < 0.01, and ***P < 0.001. (J–L) DiI tracing in control (J), Celsr3–/– (K), and Fzd3–/– (L) E12.5 midguts. Left and right panels indicate the rostral and caudal sides of tracings, respectively. Note the dramatic reduction in the number and length of longitudinal projections and the number of cell bodies (arrows) in mutant preparations. ca, caecum; hg, hindgut; mg, midgut; st, stomach. Scale bars: 500 μm (A–C), 50 μm (D–F), and 100 μm (J–L).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts