Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Angiopoietin 2 mediates microvascular and hemodynamic alterations in sepsis
Tilman Ziegler, … , Urban Deutsch, Christian Kupatt
Tilman Ziegler, … , Urban Deutsch, Christian Kupatt
Published July 1, 2013
Citation Information: J Clin Invest. 2013;123(8):3436-3445. https://doi.org/10.1172/JCI66549.
View: Text | PDF
Research Article Vascular biology

Angiopoietin 2 mediates microvascular and hemodynamic alterations in sepsis

  • Text
  • PDF
Abstract

Septic shock is characterized by increased vascular permeability and hypotension despite increased cardiac output. Numerous vasoactive cytokines are upregulated during sepsis, including angiopoietin 2 (ANG2), which increases vascular permeability. Here we report that mice engineered to inducibly overexpress ANG2 in the endothelium developed sepsis-like hemodynamic alterations, including systemic hypotension, increased cardiac output, and dilatory cardiomyopathy. Conversely, mice with cardiomyocyte-restricted ANG2 overexpression failed to develop hemodynamic alterations. Interestingly, the hemodynamic alterations associated with endothelial-specific overexpression of ANG2 and the loss of capillary-associated pericytes were reversed by intravenous injections of adeno-associated viruses (AAVs) transducing cDNA for angiopoietin 1, a TIE2 ligand that antagonizes ANG2, or AAVs encoding PDGFB, a chemoattractant for pericytes. To confirm the role of ANG2 in sepsis, we i.p. injected LPS into C57BL/6J mice, which rapidly developed hypotension, acute pericyte loss, and increased vascular permeability. Importantly, ANG2 antibody treatment attenuated LPS-induced hemodynamic alterations and reduced the mortality rate at 36 hours from 95% to 61%. These data indicate that ANG2-mediated microvascular disintegration contributes to septic shock and that inhibition of the ANG2/TIE2 interaction during sepsis is a potential therapeutic target.

Authors

Tilman Ziegler, Jan Horstkotte, Claudia Schwab, Vanessa Pfetsch, Karolina Weinmann, Steffen Dietzel, Ina Rohwedder, Rabea Hinkel, Lisa Gross, Seungmin Lee, Junhao Hu, Oliver Soehnlein, Wolfgang M. Franz, Markus Sperandio, Ulrich Pohl, Markus Thomas, Christian Weber, Hellmut G. Augustin, Reinhard Fässler, Urban Deutsch, Christian Kupatt

×

Figure 3

Cardiomyocyte-specific ANG2 overexpression does not induce peripheral microcirculatory and hemodynamic alterations.

Options: View larger image (or click on image) Download as PowerPoint
Cardiomyocyte-specific ANG2 overexpression does not induce peripheral mi...
(A and B) Cardiomyocyte-specific ANG2 overexpression (CM-ANG2-on) reduces pericyte coverage (NG2 staining) of capillaries (PECAM-1 staining) in cardiac but not skeletal muscle (scale bar: 5 μm; n = 5). (C) Systemic mean arterial pressure (n = 6) and (D) LV developed pressure is normal in 24-week-old CM-ANG2-on mice (n = 6 per group). (E) CM-ANG2-on mice display normal LV end-diastolic diameter (n = 6). (F) Minimal fibrosis was detected in CM-ANG2-on hearts. Scale bars: 1,000 μm (Lens); 200 μm (×10); 50 μm (×40). (G) HW/BW ratio was unaffected in CM-ANG2-on mice (n = 6). *P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts