Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Angiotensin-converting enzyme overexpression in myelomonocytes prevents Alzheimer’s-like cognitive decline
Kenneth E. Bernstein, … , Sebastien Fuchs, Maya Koronyo-Hamaoui
Kenneth E. Bernstein, … , Sebastien Fuchs, Maya Koronyo-Hamaoui
Published February 3, 2014
Citation Information: J Clin Invest. 2014;124(3):1000-1012. https://doi.org/10.1172/JCI66541.
View: Text | PDF
Research Article Neuroscience

Angiotensin-converting enzyme overexpression in myelomonocytes prevents Alzheimer’s-like cognitive decline

  • Text
  • PDF
Abstract

Cognitive decline in patients with Alzheimer’s disease (AD) is associated with elevated brain levels of amyloid β protein (Aβ), particularly neurotoxic Aβ1–42. Angiotensin-converting enzyme (ACE) can degrade Aβ1–42, and ACE overexpression in myelomonocytic cells enhances their immune function. To examine the effect of targeted ACE overexpression on AD, we crossed ACE10/10 mice, which overexpress ACE in myelomonocytes using the c-fms promoter, with the transgenic APPSWE/PS1ΔE9 mouse model of AD (AD+). Evaluation of brain tissue from these AD+ACE10/10 mice at 7 and 13 months revealed that levels of both soluble and insoluble brain Aβ1–42 were reduced compared with those in AD+ mice. Furthermore, both plaque burden and astrogliosis were drastically reduced. Administration of the ACE inhibitor ramipril increased Aβ levels in AD+ACE10/10 mice compared with the levels induced by the ACE-independent vasodilator hydralazine. Overall, AD+ACE10/10 mice had less brain-infiltrating cells, consistent with reduced AD-associated pathology, though ACE-overexpressing macrophages were abundant around and engulfing Aβ plaques. At 11 and 12 months of age, the AD+ACE10/WT and AD+ACE10/10 mice were virtually equivalent to non-AD mice in cognitive ability, as assessed by maze-based behavioral tests. Our data demonstrate that an enhanced immune response, coupled with increased myelomonocytic expression of catalytically active ACE, prevents cognitive decline in a murine model of AD.

Authors

Kenneth E. Bernstein, Yosef Koronyo, Brenda C. Salumbides, Julia Sheyn, Lindsey Pelissier, Dahabada H.J. Lopes, Kandarp H. Shah, Ellen A. Bernstein, Dieu-Trang Fuchs, Jeff J.-Y. Yu, Michael Pham, Keith L. Black, Xiao Z. Shen, Sebastien Fuchs, Maya Koronyo-Hamaoui

×

Figure 1

Targeted ACE overexpression in myelomonocytic cells is associated with reduced Aβ plaque burden.

Options: View larger image (or click on image) Download as PowerPoint
Targeted ACE overexpression in myelomonocytic cells is associated with r...
(A) Micrographs of paraffin sections from AD+ACEWT/WT and AD+ACE10/10 brains labeled for human Aβ using the mAb 6F/3D and standard immunohistochemical techniques. All mice were 255 days (8.5 months) old. AD+ mice that were WT for ACE showed large numbers of Aβ plaques in both the cingulate cortex and the hippocampus. In contrast, AD+ mice that were ACE10/10 demonstrated a very marked reduction in the number of Aβ plaques. n = 4 per group. (B) Paraformaldehyde-fixed brain sections from 7- to 8-month-old mice were colabeled with the anti-human Aβ mAb 6E10 (red) and Thio-S (green), which binds to fibrillar Aβ. Scale bars: 100 μm. Sections were studied by immunofluorescence (B) and quantitatively assessed for Aβ plaque area in the cortex and hippocampus (C and D). Data for individual mice as well as for group means and SEM are indicated. Percentages of the reduction in mean plaque area in AD+ mice heterozygous or homozygous for the ACE 10 allele compared with mice WT for ACE are indicated. The presence of one or two ACE 10 alleles substantially reduced the plaque area. AD+ACE10/10 mice had fewer plaques than did AD+ACE10/WT mice, but this only reached a significance of P < 0.05 (D, left and right panels) and is not indicated. n = 7–10 mice for 6E10 staining and 5–7 mice for Thio-S staining. *P < 0.05; **P < 0.001; ***P < 0.0001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts