Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Epigenomic plasticity enables human pancreatic α to β cell reprogramming
Nuria C. Bramswig, … , Markus Grompe, Klaus H. Kaestner
Nuria C. Bramswig, … , Markus Grompe, Klaus H. Kaestner
Published February 22, 2013
Citation Information: J Clin Invest. 2013;123(3):1275-1284. https://doi.org/10.1172/JCI66514.
View: Text | PDF
Research Article

Epigenomic plasticity enables human pancreatic α to β cell reprogramming

  • Text
  • PDF
Abstract

Insulin-secreting β cells and glucagon-secreting α cells maintain physiological blood glucose levels, and their malfunction drives diabetes development. Using ChIP sequencing and RNA sequencing analysis, we determined the epigenetic and transcriptional landscape of human pancreatic α, β, and exocrine cells. We found that, compared with exocrine and β cells, differentiated α cells exhibited many more genes bivalently marked by the activating H3K4me3 and repressing H3K27me3 histone modifications. This was particularly true for β cell signature genes involved in transcriptional regulation. Remarkably, thousands of these genes were in a monovalent state in β cells, carrying only the activating or repressing mark. Our epigenomic findings suggested that α to β cell reprogramming could be promoted by manipulating the histone methylation signature of human pancreatic islets. Indeed, we show that treatment of cultured pancreatic islets with a histone methyltransferase inhibitor leads to colocalization of both glucagon and insulin and glucagon and insulin promoter factor 1 (PDX1) in human islets and colocalization of both glucagon and insulin in mouse islets. Thus, mammalian pancreatic islet cells display cell-type–specific epigenomic plasticity, suggesting that epigenomic manipulation could provide a path to cell reprogramming and novel cell replacement-based therapies for diabetes.

Authors

Nuria C. Bramswig, Logan J. Everett, Jonathan Schug, Craig Dorrell, Chengyang Liu, Yanping Luo, Philip R. Streeter, Ali Naji, Markus Grompe, Klaus H. Kaestner

×

Figure 6

Inhibition of histone methyltransferases leads to partial endocrine cell-fate conversion.

Options: View larger image (or click on image) Download as PowerPoint
Inhibition of histone methyltransferases leads to partial endocrine cell...
(A) H3K27me3 ChIP-Seq analysis of human islets shows decreased H3K27me3 levels at the ARX, MAFA, and PDX1 loci following treatment of human islets with the histone methyltransferase inhibitor Adox. (B) Adox-treatment of human islets results in colocalization of glucagon (red) and insulin (green) granules within the same cell (yellow arrows), suggesting partial endocrine cell fate conversion, which was not seen in vehicle-treated islets (control). Original magnification, ×63. For Z-stack confocal images see Supplemental Videos 1 and 2. (C) Treatment of human islets with Adox results in colocalization of the β cell–specific transcription factor Pdx1 (white) and glucagon (red), further indicating endocrine reprogramming (white arrows: glucagon-positive, Pdx1-negative cells; yellow arrows: glucagon-positive, Pdx1-positive cells). The images on the right correspond to the area within yellow box. Original magnification, ×63. (D) Quantification of glucagon-positive, Pdx1-positive cells in untreated and Adox-treated human islets reveals many double-positive cells after Adox treatment, indicating initiation of reprogramming events in α cells. (E) Adox treatment of human islets leads to a decrease in NKX6-1 and MAFA levels in β cells (n = 3 α, n = 3 β, n = 2 treated α, n = 2 treated β), an increase in PDX1-levels, and no change in INS and GCG levels. (F) In Adox-treated α cells, we observe no change in INS and GCG expression, a slight decrease in NKX6-1 and MAFA levels, and an increase of ARX and PDX1 expression.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts