Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Retinoids activate the irritant receptor TRPV1 and produce sensory hypersensitivity
Shijin Yin, … , Susan M. Carlton, Hongzhen Hu
Shijin Yin, … , Susan M. Carlton, Hongzhen Hu
Published August 8, 2013
Citation Information: J Clin Invest. 2013;123(9):3941-3951. https://doi.org/10.1172/JCI66413.
View: Text | PDF
Research Article Dermatology

Retinoids activate the irritant receptor TRPV1 and produce sensory hypersensitivity

  • Text
  • PDF
Abstract

Retinoids are structurally related derivatives of vitamin A and are required for normal vision as well as cell proliferation and differentiation. Clinically, retinoids are effective in treating many skin disorders and cancers. Application of retinoids evokes substantial irritating side effects, including pain and inflammation; however, the precise mechanisms accounting for the sensory hypersensitivity are not understood. Here we show that both naturally occurring and synthetic retinoids activate recombinant or native transient receptor potential channel vanilloid subtype 1 (TRPV1), an irritant receptor for capsaicin, the pungent ingredient of chili peppers. In vivo, retinoids produced pain-related behaviors that were either eliminated or significantly reduced by genetic or pharmacological inhibition of TRPV1 function. These findings identify TRPV1 as an ionotropic receptor for retinoids and provide cellular and molecular insights into retinoid-evoked hypersensitivity. These findings also suggest that selective TRPV1 antagonists are potential therapeutic drugs for treating retinoid-induced sensory hypersensitivity.

Authors

Shijin Yin, Jialie Luo, Aihua Qian, Junhui Du, Qing Yang, Shentai Zhou, Weihua Yu, Guangwei Du, Richard B. Clark, Edgar T. Walters, Susan M. Carlton, Hongzhen Hu

×

Figure 6

Pharmacological or genetic ablation of TRPV1 function abolishes retinoid-induced sensory hypersensitivity.

Options: View larger image (or click on image) Download as PowerPoint
Pharmacological or genetic ablation of TRPV1 function abolishes retinoid...
(A–C) Time course of thermal hypersensitivity in animals treated with AM580 (A), 9-cis-RA (B). or ATRA (C). Intraplantar injection of 10 μl of each retinoid (AM580, 2 nmol; 9-cis-RA, 3 nmol; and ATRA, 30 nmol; red traces) induced thermal hyperalgesia in Trpv1+/+ mice. AMG9810 (10 mg/kg; i.p. injection;green traces) abolished the effect of selected retinoids. Retinoid-elicited thermal hypersensitivity was also abolished in Trpv1–/– mice (blue traces). *P < 0.05, **P < 0.01, ***P < 0.001 versus vehicle; ++P < 0.01, +++P < 0.001 versus AMG9810; ##P < 0.01, ###P < 0.001 versus Trpv1–/–. (D–F) Time course of mechanical allodynia in animals treated with AM580 (D), 9-cis-RA (E), and ATRA (F). Intraplantar injection of 10 μl of each retinoid (AM580, 2 nmol; 9-cis-RA, 3 nmol; and ATRA, 30 nmol; red traces) produced mechanical hypersensitivity in Trpv1+/+ mice, which was abolished by i.p. injection of AMG9810 (10 mg/kg; green traces). Retinoid-elicited mechanical hypersensitivity was also abolished in the Trpv1–/– mice (blue traces). *P < 0.05, **P < 0.01, ***P < 0.001 versus vehicle; +P < 0.05, ++P < 0.01, +++P < 0.001 versus AMG9810; and #P < 0.05, #P < 0.01 versus Trpv1–/–. Please note that no effect was observed upon injection of 10 μl vehicle alone (0.9% saline; black traces). n = 5–10 animals per condition. Baseline values for mechanical and thermal testing are listed in Supplemental Table 2.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts