Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Familial Alzheimer’s disease–associated presenilin-1 alters cerebellar activity and calcium homeostasis
Diego Sepulveda-Falla, … , Chris I. De Zeeuw, Markus Glatzel
Diego Sepulveda-Falla, … , Chris I. De Zeeuw, Markus Glatzel
Published February 24, 2014
Citation Information: J Clin Invest. 2014;124(4):1552-1567. https://doi.org/10.1172/JCI66407.
View: Text | PDF
Research Article Neuroscience

Familial Alzheimer’s disease–associated presenilin-1 alters cerebellar activity and calcium homeostasis

  • Text
  • PDF
Abstract

Familial Alzheimer’s disease (FAD) is characterized by autosomal dominant heritability and early disease onset. Mutations in the gene encoding presenilin-1 (PS1) are found in approximately 80% of cases of FAD, with some of these patients presenting cerebellar damage with amyloid plaques and ataxia with unclear pathophysiology. A Colombian kindred carrying the PS1-E280A mutation is the largest known cohort of PS1-FAD patients. Here, we investigated PS1-E280A–associated cerebellar dysfunction and found that it occurs early in PS1-E208A carriers, while cerebellar signs are highly prevalent in patients with dementia. Postmortem analysis of cerebella of PS1-E280A carrier revealed greater Purkinje cell (PC) loss and more abnormal mitochondria compared with controls. In PS1-E280A tissue, ER/mitochondria tethering was impaired, Ca2+ channels IP3Rs and CACNA1A were downregulated, and Ca2+-dependent mitochondrial transport proteins MIRO1 and KIF5C were reduced. Accordingly, expression of PS1-E280A in a neuronal cell line altered ER/mitochondria tethering and transport compared with that in cells expressing wild-type PS1. In a murine model of PS1-FAD, animals exhibited mild ataxia and reduced PC simple spike activity prior to cerebellar β-amyloid deposition. Our data suggest that impaired calcium homeostasis and mitochondrial dysfunction in PS1-FAD PCs reduces their activity and contributes to motor coordination deficits prior to Aβ aggregation and dementia. We propose that PS1-E280A affects both Ca2+ homeostasis and Aβ precursor processing, leading to FAD and neurodegeneration.

Authors

Diego Sepulveda-Falla, Alvaro Barrera-Ocampo, Christian Hagel, Anne Korwitz, Maria Fernanda Vinueza-Veloz, Kuikui Zhou, Martijn Schonewille, Haibo Zhou, Luis Velazquez-Perez, Roberto Rodriguez-Labrada, Andres Villegas, Isidro Ferrer, Francisco Lopera, Thomas Langer, Chris I. De Zeeuw, Markus Glatzel

×

Figure 6

Altered ER/mitochondria tethering and transport in SH-SY5Y cells overexpressing PS1-E280A.

Options: View larger image (or click on image) Download as PowerPoint
Altered ER/mitochondria tethering and transport in SH-SY5Y cells overexp...
(A) Representative confocal fluorescent micrographs and scatter plots of SH-SY5Y cells transiently transfected with human wild-type PS1 (PS1WT), PS1 mutation E280A (PS1-E280A), and PS1 deletion Δ9 (PS1Δ9). Cells were labeled with MitoTracker Red and ER marker KDEL and evaluated under basal conditions (vehicle = DMSO) and Ca2+ overload (calcimycin 30 minutes). Scale bar: 10 μm. (B) Pearson’s r analysis of 30 cells in 3 independent experiments (PS1WT, PS1-E280A, and PS1Δ9). Dotted line indicates Pearson’s r significance for colocalization. Only PS1WT under basal conditions and PS1-E280A treated with calcimycin for 30 minutes showed significant colocalization. (C) Representative kymographs of SH-SY5Y cells transiently transfected with PS1WT, PS1-E280A, and PS1Δ9. Cells were labeled with MitoTracker Red and recorded for 4 minutes. (D) Mitochondrial mobility analysis expressed as percentage of mobile mitochondria. At least 12 kymographs were analyzed in 3 independent experiments. PS1-E280A SH-SY5Y cells showed increased mobility when compared with PS1WT cells. (E) Representative Western blots of SH-SY5Y cells transiently transfected with PS1WT, PS1-E280A, and PS1Δ9 for IP3R1 and MIRO1 proteins. Cells were treated for 16 hours with DMSO and calcimycin. (F) Densitometric quantification of IP3R1 and MIRO1 normalized to βIII tubulin in 3 independent experiments conducted in transfected SH-SY5Y cells. For IP3R1, only PS1-E280A showed statistically significant reduction between basal conditions and chronic Ca2+ overload. MIRO1 levels showed statistically significant differences in both PS1 mutants under basal and chronic Ca2+ overload conditions. *P < 0.05, data are mean ± SEM, Mann-Whitney U test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts