Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Liver-resident NK cells confer adaptive immunity in skin-contact inflammation
Hui Peng, Xiaojun Jiang, Yonglin Chen, Dorothy K. Sojka, Haiming Wei, Xiang Gao, Rui Sun, Wayne M. Yokoyama, Zhigang Tian
Hui Peng, Xiaojun Jiang, Yonglin Chen, Dorothy K. Sojka, Haiming Wei, Xiang Gao, Rui Sun, Wayne M. Yokoyama, Zhigang Tian
View: Text | PDF
Research Article Immunology

Liver-resident NK cells confer adaptive immunity in skin-contact inflammation

  • Text
  • PDF
Abstract

Liver natural killer (NK) cells were recently reported to possess memory-like properties in contact hypersensitivity (CHS) models. However, the phenotype and origin of these “memory” NK cells cannot be distinguished from other NK cell subpopulations. Here, we define the transcriptional, phenotypic, and functional features of liver NK cell subsets and their roles in mediating CHS. Liver NK cells can be divided into two distinct subsets: CD49a+DX5– and CD49a–DX5+. Substantial transcriptional and phenotypic differences existed between liver CD49a+DX5– NK cells and other NK cell subsets. CD49a+DX5– NK cells possessed memory potential and conferred hapten-specific CHS responses upon hapten challenge. Importantly, CD49a+DX5– NK cells were liver resident and were present in the liver sinusoidal blood, but not the afferent and efferent blood of the liver. Moreover, they appeared to originate from hepatic hematopoietic progenitor/stem cells (HPCs/HSCs) but not from the bone marrow, and maintained their phenotypes in the steady state. Our findings of liver-resident NK cells shed new light on the acquisition of memory-like properties of NK cells.

Authors

Hui Peng, Xiaojun Jiang, Yonglin Chen, Dorothy K. Sojka, Haiming Wei, Xiang Gao, Rui Sun, Wayne M. Yokoyama, Zhigang Tian

×

Figure 3

Hepatic DX5– NK cells preferentially traffic to the liver and maintain their phenotypic features after adoptive transfer.

Options: View larger image (or click on image) Download as PowerPoint
Hepatic DX5– NK cells preferentially traffic to the liver and maintain t...
(A) Liver MNCs (106) from CD45.1+ mice were adoptively transferred intravenously into sublethally irradiated (IR) CD45.2+ B6 mice. Twenty-four hours after transfer, CD45.1+ NK (NK1.1+CD3–CD19–) cells were analyzed for DX5 expression in recipient liver, spleen, and BM. (B) DX5– or DX5+ liver NK cells (105) were sorted from CD45.1+ mice and intravenously transferred into sublethally irradiated CD45.2+ B6 mice. DX5 expression of donor NK cells before transfer is shown pre- and post-sort. Seven days after transfer, CD45.1+ NK cells were analyzed for DX5 expression in recipient liver and spleen. All data in this figure are representative of 2 independent experiments.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts