Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction
Christian A. Bauer, … , Natalie M. Claudio, Thorsten R. Mempel
Christian A. Bauer, … , Natalie M. Claudio, Thorsten R. Mempel
Published May 8, 2014
Citation Information: J Clin Invest. 2014;124(6):2425-2440. https://doi.org/10.1172/JCI66375.
View: Text | PDF
Research Article Oncology

Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction

  • Text
  • PDF
Abstract

Tregs control various functions of effector T cells; however, where and how Tregs exert their immunomodulatory effects remain poorly understood. Here we developed a murine model of adoptive T cell therapy and found that Tregs induce a dysfunctional state in tumor-infiltrating CTLs that resembles T cell exhaustion and is characterized by low expression of effector cytokines, inefficient cytotoxic granule release, and coexpression of coinhibitory receptors PD-1 and TIM-3. Induction of CTL dysfunction was an active process, requiring local TCR signals in tumor tissue. Tregs infiltrated tumors only subsequent to Ag-dependent activation and expansion in tumor-draining LNs; however, Tregs also required local Ag reencounter within tumor tissue to induce CTL dysfunction and prevent tumor rejection. Multiphoton intravital microscopy revealed that in contrast to CTLs, Tregs only rarely and briefly interrupted their migration in tumor tissue in an Ag-dependent manner and formed unstable tethering-interactions with CD11c+ APCs, coinciding with a marked reduction of CD80 and CD86 on APCs. Activation of CTLs by Treg-conditioned CD80/86lo DCs promoted enhanced expression of both TIM-3 and PD-1. Based on these data, we propose that Tregs locally change the costimulatory landscape in tumor tissue through transient, Ag-dependent interactions with APCs, thus inducing CTL dysfunction by altering the balance of costimulatory and coinhibitory signals these cells receive.

Authors

Christian A. Bauer, Edward Y. Kim, Francesco Marangoni, Esteban Carrizosa, Natalie M. Claudio, Thorsten R. Mempel

×

Figure 6

Treg-mediated inhibition of tumor rejection requires local Ag recognition in tumor tissue.

Options: View larger image (or click on image) Download as PowerPoint
Treg-mediated inhibition of tumor rejection requires local Ag recognitio...
(A) The HA107–119 determinant of HA was mutated in position 5 to generate HA F111D and HA F111E in order to prevent epitope binding to I-Ed while preserving the HA515–523 determinant. (B) CT26 cells expressing either no HA, WT HA, or either mutant HA were mixed at 1:20 ratios with splenocytes from TCR-HA or CL4 TCR transgenic animals. T cell activation was measured 24 hours later as surface expression of CD69. Each analysis was performed in triplicate; graph shows summary of data. (C) Mice implanted with both CT26HA and CT26HA F111D tumors were repetitively injected with HA-Tregs on days 0, 4, and 8. HA-Tregs only expanded in CT26HA dLNs, but subsequently, after entry into the bloodstream, had access to both CT26HA and CT26HA F111D tumors. However, they would only re-encounter their cognate Ag in CT26HA tumors. (D) When 5 × 106 HA-CTLs were injected on day 7, HA-Tregs controlled HA-CTL–mediated rejection of CT26HA tumors, but not CT26HA F111D tumors. Data represent 3 mice per group in 1 representative of 2 independent experiments performed. All graphs indicate means; error bars denote SD (B) or SEM (D). *P < 0.05 vs. all other groups.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts