Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction
Christian A. Bauer, … , Natalie M. Claudio, Thorsten R. Mempel
Christian A. Bauer, … , Natalie M. Claudio, Thorsten R. Mempel
Published May 8, 2014
Citation Information: J Clin Invest. 2014;124(6):2425-2440. https://doi.org/10.1172/JCI66375.
View: Text | PDF
Research Article Oncology

Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction

  • Text
  • PDF
Abstract

Tregs control various functions of effector T cells; however, where and how Tregs exert their immunomodulatory effects remain poorly understood. Here we developed a murine model of adoptive T cell therapy and found that Tregs induce a dysfunctional state in tumor-infiltrating CTLs that resembles T cell exhaustion and is characterized by low expression of effector cytokines, inefficient cytotoxic granule release, and coexpression of coinhibitory receptors PD-1 and TIM-3. Induction of CTL dysfunction was an active process, requiring local TCR signals in tumor tissue. Tregs infiltrated tumors only subsequent to Ag-dependent activation and expansion in tumor-draining LNs; however, Tregs also required local Ag reencounter within tumor tissue to induce CTL dysfunction and prevent tumor rejection. Multiphoton intravital microscopy revealed that in contrast to CTLs, Tregs only rarely and briefly interrupted their migration in tumor tissue in an Ag-dependent manner and formed unstable tethering-interactions with CD11c+ APCs, coinciding with a marked reduction of CD80 and CD86 on APCs. Activation of CTLs by Treg-conditioned CD80/86lo DCs promoted enhanced expression of both TIM-3 and PD-1. Based on these data, we propose that Tregs locally change the costimulatory landscape in tumor tissue through transient, Ag-dependent interactions with APCs, thus inducing CTL dysfunction by altering the balance of costimulatory and coinhibitory signals these cells receive.

Authors

Christian A. Bauer, Edward Y. Kim, Francesco Marangoni, Esteban Carrizosa, Natalie M. Claudio, Thorsten R. Mempel

×

Figure 4

Tregs condition DCs to reduce their costimulatory activity and augment coexpression of PD-1 and TIM-3 by CTLs.

Options: View larger image (or click on image) Download as PowerPoint
Tregs condition DCs to reduce their costimulatory activity and augment c...
(A) LPS-activated splenic DCs were either not pulsed or pulsed with HA515–523 peptide, HA107–119 pepitde, or both and cocultured with HA-Tregs for 3 hours before addition of HA-CTLs, followed by analysis for expression of PD-1 and TIM-3 on CTLs 12 hours later. (B) As in A, but DCs were analyzed for expression of CD80 and CD86 directly before addition of CTLs. (C) HA-CTLs were reactivated for 3 hours by the indicated doses of anti-CD3ε antibodies in the absence or presence of activating anti-CD28 antibodies and analyzed for expression of PD-1 and TIM-3. (D) 10-day-old CT26HA tumors seeded with HA-Tregs or not were analyzed for expression of PD-L1, PD-L2, and galectin-9 on CD11b+CD11c+ DCs. (E) Expression of CD80 and CD86 on CD11b+CD11c+ DCs from 10-day-old CT26HA tumors harboring HA-Tregs or not. Each experiment shown is representative of at least 2 (n = 5 each) with similar results. Filled histograms show isotype staining. All graphs indicate means; error bars denote SD (A–C) or SEM (E). *P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts