Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis
Anju Singh, … , Geoffrey Girnun, Shyam Biswal
Anju Singh, … , Geoffrey Girnun, Shyam Biswal
Published June 10, 2013
Citation Information: J Clin Invest. 2013;123(7):2921-2934. https://doi.org/10.1172/JCI66353.
View: Text | PDF
Research Article Oncology

Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis

  • Text
  • PDF
Abstract

The mechanisms by which deregulated nuclear factor erythroid-2–related factor 2 (NRF2) and kelch-like ECH-associated protein 1 (KEAP1) signaling promote cellular proliferation and tumorigenesis are poorly understood. Using an integrated genomics and 13C-based targeted tracer fate association (TTFA) study, we found that NRF2 regulates miR-1 and miR-206 to direct carbon flux toward the pentose phosphate pathway (PPP) and the tricarboxylic acid (TCA) cycle, reprogramming glucose metabolism. Sustained activation of NRF2 signaling in cancer cells attenuated miR-1 and miR-206 expression, leading to enhanced expression of PPP genes. Conversely, overexpression of miR-1 and miR-206 decreased the expression of metabolic genes and dramatically impaired NADPH production, ribose synthesis, and in vivo tumor growth in mice. Loss of NRF2 decreased the expression of the redox-sensitive histone deacetylase, HDAC4, resulting in increased expression of miR-1 and miR-206, and not only inhibiting PPP expression and activity but functioning as a regulatory feedback loop that repressed HDAC4 expression. In primary tumor samples, the expression of miR-1 and miR-206 was inversely correlated with PPP gene expression, and increased expression of NRF2-dependent genes was associated with poor prognosis. Our results demonstrate that microRNA-dependent (miRNA-dependent) regulation of the PPP via NRF2 and HDAC4 represents a novel link between miRNA regulation, glucose metabolism, and ROS homeostasis in cancer cells.

Authors

Anju Singh, Christine Happel, Soumen K. Manna, George Acquaah-Mensah, Julian Carrerero, Sarvesh Kumar, Poonam Nasipuri, Kristopher W. Krausz, Nobunao Wakabayashi, Ruby Dewi, Laszlo G. Boros, Frank J. Gonzalez, Edward Gabrielson, Kwok K. Wong, Geoffrey Girnun, Shyam Biswal

×

Figure 1

NRF2 reprograms glucose metabolism to promote tumor growth.

Options: View larger image (or click on image) Download as PowerPoint
NRF2 reprograms glucose metabolism to promote tumor growth.
(A) NRF2 act...
(A) NRF2 activity is essential for the growth of KEAP1-deficient cancer cells. A549 (KEAP1G333C) cells stably transduced with doxycycline-inducible Nrf2 shRNA were implanted into nude mice. Two weeks after tumor implantation, mice were randomly allocated to 2 groups (n = 13–15 per group) and administered vehicle or doxycycline in the drinking water. Tumor volume was recorded. Data are presented as the mean tumor volume ± SEM. *P < 0.05 relative to the vehicle-treated group. (B) Possible 13C (red circles) labeling in the intermediates of the pentose cycle, lactate, and glutamate using [1,2-13C2] glucose as the single tracer. (C) Comparison of 13CO2 production by A549-Luc shRNA and A549-Nrf2 shRNA cultures. *P < 0.0000. (D) Decrease in 13C-labeled extracellular lactate in the culture medium from A549-Nrf2 shRNA cells. *P < 0.004. (E) Pentose cycle activity relative to glycolysis measured by m1/m2 ratios in lactate in the media. (F) Determination of C2-labeled through C5-labeled glutamate levels indicating substrate (OAA and acetyl CoA) entry into the TCA cycle. *P = 0.006 relative to the cells expressing Luc shRNA. (G) Reduced PDH flux in A549-Nrf2 shRNA cells indicating a significant decrease in the TCA cycle flux. *P < 0.0001 relative to cells expressing Luc shRNA. (H) Comparison of 14C-labeled RNA ribose fraction in Luc shRNA and Nrf2 shRNA cells. *P < 0.05. (I) Relative 13CO2 production by MEF cells. Keap1–/– cells demonstrated a significantly higher glucose oxidation rate. *P < 0.00 relative to WT. (J) Relative RNA ribose synthesis (mRNA and rRNA) through direct glucose oxidation and the nonoxidative steps of the pentose cycle in MEF cells. *P < 0.01 relative to WT.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts