Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Superior T memory stem cell persistence supports long-lived T cell memory
Enrico Lugli, … , Genoveffa Franchini, Mario Roederer
Enrico Lugli, … , Genoveffa Franchini, Mario Roederer
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(2):594-599. https://doi.org/10.1172/JCI66327.
View: Text | PDF
Brief Report Immunology

Superior T memory stem cell persistence supports long-lived T cell memory

  • Text
  • PDF
Abstract

Long-lived memory T cells are able to persist in the host in the absence of antigen; however, the mechanism by which they are maintained is not well understood. Recently, a subset of human T cells, stem cell memory T cells (TSCM cells), was shown to be self-renewing and multipotent, thereby providing a potential reservoir for T cell memory throughout life. However, their in vivo dynamics and homeostasis still remain to be defined due to the lack of suitable animal models. We identified T cells with a TSCM phenotype and stem cell–like properties in nonhuman primates. These cells were the least-differentiated memory subset, were functionally distinct from conventional memory cells, and served as precursors of central memory. Antigen-specific TSCM cells preferentially localized to LNs and were virtually absent from mucosal surfaces. They were generated in the acute phase of viral infection, preferentially survived in comparison with all other memory cells following elimination of antigen, and stably persisted for the long term. Thus, one mechanism for maintenance of long-term T cell memory derives from the unique homeostatic properties of TSCM cells. Vaccination strategies designed to elicit durable cellular immunity should target the generation of TSCM cells.

Authors

Enrico Lugli, Maria H. Dominguez, Luca Gattinoni, Pratip K. Chattopadhyay, Diane L. Bolton, Kaimei Song, Nichole R. Klatt, Jason M. Brenchley, Monica Vaccari, Emma Gostick, David A. Price, Thomas A. Waldmann, Nicholas P. Restifo, Genoveffa Franchini, Mario Roederer

×

Figure 2

TSCM cells from healthy RMs are phenotypically and functionally distinct T cells.

Options: View larger image (or click on image) Download as PowerPoint
TSCM cells from healthy RMs are phenotypically and functionally distinct...
(A) Expression of CXCR3 and CD122 on CD8+ TN, TSCM, TCM, and TEM cells by flow cytometry. (B) Percentage of CD8+ T cell subsets expressing CCR5, IL-18Rα, CD38, Ki-67, HLA-DR, or CXCR3. CD130 and CD122 are indicated as MFI. *P < 0.05 versus TSCM. (C) Pie charts representing the proportion of cells producing different combinations of IL-2, IFN-γ, and TNF after SEB stimulation. *P < 0.05, ***P < 0.001. (D) Mean percentage of cells with various differentiation phenotypes recovered following activation of FACS-sorted TN, TSCM, TCM, and TEM cells by αCD3/CD28 antibodies in vitro for 5 days (n = 6). The analysis was carried out on cells that diluted CFSE. Boxes in B and D show interquartile range and median values.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts