Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Interactions between Siglec-7/9 receptors and ligands influence NK cell–dependent tumor immunosurveillance
Camilla Jandus, … , Christian Münz, Stephan von Gunten
Camilla Jandus, … , Christian Münz, Stephan von Gunten
Published February 24, 2014
Citation Information: J Clin Invest. 2014;124(4):1810-1820. https://doi.org/10.1172/JCI65899.
View: Text | PDF
Research Article Immunology

Interactions between Siglec-7/9 receptors and ligands influence NK cell–dependent tumor immunosurveillance

  • Text
  • PDF
Abstract

Alteration of the surface glycosylation pattern on malignant cells potentially affects tumor immunity by directly influencing interactions with glycan-binding proteins (lectins) on the surface of immunomodulatory cells. The sialic acid–binding Ig-like lectins Siglec-7 and -9 are MHC class I–independent inhibitory receptors on human NK cells that recognize sialic acid–containing carbohydrates. Here, we found that the presence of Siglec-9 defined a subset of cytotoxic NK cells with a mature phenotype and enhanced chemotactic potential. Interestingly, this Siglec-9+ NK cell population was reduced in the peripheral blood of cancer patients. Broad analysis of primary tumor samples revealed that ligands of Siglec-7 and -9 were expressed on human cancer cells of different histological types. Expression of Siglec-7 and -9 ligands was associated with susceptibility of NK cell–sensitive tumor cells and, unexpectedly, of presumably NK cell–resistant tumor cells to NK cell–mediated cytotoxicity. Together, these observations have direct implications for NK cell–based therapies and highlight the requirement to consider both MHC class I haplotype and tumor-specific glycosylation.

Authors

Camilla Jandus, Kayluz Frias Boligan, Obinna Chijioke, He Liu, Meike Dahlhaus, Thomas Démoulins, Christoph Schneider, Marc Wehrli, Robert E. Hunger, Gabriela M. Baerlocher, Hans-Uwe Simon, Pedro Romero, Christian Münz, Stephan von Gunten

×

Figure 2

Desialylation of target cells that express ligands of Siglec-7 and -9 enhances NK cell cytotoxicity and cytokine secretion.

Options: View larger image (or click on image) Download as PowerPoint
Desialylation of target cells that express ligands of Siglec-7 and -9 en...
(A–C) Cytotoxicity of isolated peripheral blood NK cells from healthy donors against K562 (A and B), HeLa (A and C), and 721.221 (A) cell lines, assessed in a 51Cr release assay, without or with neuraminidase treatment of target cells. Cytotoxicity was evaluated at a 10:1 E/T ratio (A) or as indicated (B and C). (D) Flow cytometric CD107a measurement on NK cells after coculture with desialylated or untreated K562, HeLa, or 721.221 cells at a 1:1 E/T ratio. (E) Intracellular cytokine measurement in NK cells in the presence of K562 cells with or without neuraminidase treatment (10:1 E/T ratio). (F) Flow cytometry of CFSE-labeled HeLa and K562 cells, prior to intraperitoneal injection (Pre-transfer) and after recovery 12 hours later in individual poly I:C–preactivated huNSG mice (no. 1–3 for HeLa; no. 1–5 for K562). Percentage of CFSEhi (wild-type K562 and HeLa) and CFSElo (desialylated K562 and HeLa; red boxes) cells is indicated. **P < 0.005, ***P < 0.001, Student’s t test. Data are representative of at least 5 (A–C), 7 (D), 4 (E), and 2 (F) independent experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts