Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling
Katsuhiko Funai, … , Trey Coleman, Clay F. Semenkovich
Katsuhiko Funai, … , Trey Coleman, Clay F. Semenkovich
Published February 8, 2013
Citation Information: J Clin Invest. 2013;123(3):1229-1240. https://doi.org/10.1172/JCI65726.
View: Text | PDF | Corrigendum
Research Article Metabolism

Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling

  • Text
  • PDF
Abstract

Exogenous dietary fat can induce obesity and promote diabetes, but endogenous fat production is not thought to affect skeletal muscle insulin resistance, an antecedent of metabolic disease. Unexpectedly, the lipogenic enzyme fatty acid synthase (FAS) was increased in the skeletal muscle of mice with diet-induced obesity and insulin resistance. Skeletal muscle–specific inactivation of FAS protected mice from insulin resistance without altering adiposity, specific inflammatory mediators of insulin signaling, or skeletal muscle levels of diacylglycerol or ceramide. Increased insulin sensitivity despite high-fat feeding was driven by activation of AMPK without affecting AMP content or the AMP/ATP ratio in resting skeletal muscle. AMPK was induced by elevated cytosolic calcium caused by impaired sarco/endoplasmic reticulum calcium ATPase (SERCA) activity due to altered phospholipid composition of the sarcoplasmic reticulum (SR), but came at the expense of decreased muscle strength. Thus, inhibition of skeletal muscle FAS prevents obesity-associated diabetes in mice, but also causes muscle weakness, which suggests that mammals have retained the capacity for lipogenesis in muscle to preserve physical performance in the setting of disrupted metabolic homeostasis.

Authors

Katsuhiko Funai, Haowei Song, Li Yin, Irfan J. Lodhi, Xiaochao Wei, Jun Yoshino, Trey Coleman, Clay F. Semenkovich

×

Figure 1

Induction of skeletal muscle FAS by HFD feeding and FASKOS mouse generation.

Options: View larger image (or click on image) Download as PowerPoint
Induction of skeletal muscle FAS by HFD feeding and FASKOS mouse generat...
(A) FAS mRNA, protein, and enzyme activity in soleus muscles from mice fed chow or HFD (n = 7 per group). (B) Western blot analyses of FAS protein expression in various muscles (top) and tissues (bottom). GW, gastrocnemius (white); GR, gastrocnemius (red); TA, tibialis anterior; Epi, epitrochlearis; Vast, vastus lateralis; Diaph, diaphragm; COXIV, mitochondrial cytochrome c oxidase subunit IV. (C) FAS Western blots from muscles (top) and other tissues (bottom) in control and FASKOS mice. (D) FAS mRNA (n = 6 per genotype), protein (n = 7 per genotype), and enzyme activity (n = 10 per genotype) in control and FASKOS mice. Data are mean ± SEM.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts