Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Lung capillaries raise the hypoxia alarm
Jahar Bhattacharya
Jahar Bhattacharya
Published October 24, 2012
Citation Information: J Clin Invest. 2012;122(11):3845-3847. https://doi.org/10.1172/JCI65623.
View: Text | PDF
Commentary

Lung capillaries raise the hypoxia alarm

  • Text
  • PDF
Abstract

When ventilation is blocked, the lung can protect against the loss of blood oxygenation by activating localized arterial vasoconstriction, reducing blood flow to underventilated regions, and redirecting flow to better-ventilated alveoli. This phenomenon, hypoxic pulmonary vasoconstriction (HPV), preserves the overall efficiency of blood oxygenation, but the mechanism by which the hypoxic signal is transmitted to the smooth muscle that contracts the arterioles has remained largely a mystery. In this issue of the JCI, Wang et al. reveal that the endothelial lining of the hypoxic alveoli plays a key role in sensing hypoxia and transmitting the signal to initiate HPV.

Authors

Jahar Bhattacharya

×

Full Text PDF | Download (507.10 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts