Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Blockade of individual Notch ligands and receptors controls graft-versus-host disease
Ivy T. Tran, Ashley R. Sandy, Alexis J. Carulli, Christen Ebens, Jooho Chung, Gloria T. Shan, Vedran Radojcic, Ann Friedman, Thomas Gridley, Amy Shelton, Pavan Reddy, Linda C. Samuelson, Minhong Yan, Christian W. Siebel, Ivan Maillard
Ivy T. Tran, Ashley R. Sandy, Alexis J. Carulli, Christen Ebens, Jooho Chung, Gloria T. Shan, Vedran Radojcic, Ann Friedman, Thomas Gridley, Amy Shelton, Pavan Reddy, Linda C. Samuelson, Minhong Yan, Christian W. Siebel, Ivan Maillard
View: Text | PDF
Research Article Immunology

Blockade of individual Notch ligands and receptors controls graft-versus-host disease

  • Text
  • PDF
Abstract

Graft-versus-host disease (GVHD) is the main complication of allogeneic bone marrow transplantation. Current strategies to control GVHD rely on global immunosuppression. These strategies are incompletely effective and decrease the anticancer activity of the allogeneic graft. We previously identified Notch signaling in T cells as a new therapeutic target for preventing GVHD. Notch-deprived T cells showed markedly decreased production of inflammatory cytokines, but normal in vivo proliferation, increased accumulation of regulatory T cells, and preserved anticancer effects. Here, we report that γ-secretase inhibitors can block all Notch signals in alloreactive T cells, but lead to severe on-target intestinal toxicity. Using newly developed humanized antibodies and conditional genetic models, we demonstrate that Notch1/Notch2 receptors and the Notch ligands Delta-like1/4 mediate all the effects of Notch signaling in T cells during GVHD, with dominant roles for Notch1 and Delta-like4. Notch1 inhibition controlled GVHD, but led to treatment-limiting toxicity. In contrast, Delta-like1/4 inhibition blocked GVHD without limiting adverse effects while preserving substantial anticancer activity. Transient blockade in the peritransplant period provided durable protection. These findings open new perspectives for selective and safe targeting of individual Notch pathway components in GVHD and other T cell–mediated human disorders.

Authors

Ivy T. Tran, Ashley R. Sandy, Alexis J. Carulli, Christen Ebens, Jooho Chung, Gloria T. Shan, Vedran Radojcic, Ann Friedman, Thomas Gridley, Amy Shelton, Pavan Reddy, Linda C. Samuelson, Minhong Yan, Christian W. Siebel, Ivan Maillard

×

Figure 8

Preserved hematopoietic recovery after allogeneic transplantation in mice treated with anti-Dll1/Dll4 antibodies.

Options: View larger image (or click on image) Download as PowerPoint
Preserved hematopoietic recovery after allogeneic transplantation in mic...
Allo-BMT and transient administration of anti-Dll1/Dll4 or control antibodies (days 0–10) were performed as described in Figure 6. (A) Weekly complete blood counts after allo-BMT showing unimpaired recovery in recipients treated with anti-Dll1/Dll4 antibodies. (B) CFU-GM activity in the BM on day 21 after transplantation. (C) Absolute numbers of CD45.1+ cells derived from B6-CD45.1 donor TCD BM at days 14, 21, and 35. This showed preserved engraftment and expansion of CD45.1+ donor-derived cells in the BM. Bar graphs represent mean ± SD.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts