Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Medullary thymic epithelial cell depletion leads to autoimmune hepatitis
Anthony J. Bonito, … , Matthew C. Walsh, Konstantina Alexandropoulos
Anthony J. Bonito, … , Matthew C. Walsh, Konstantina Alexandropoulos
Published July 15, 2013
Citation Information: J Clin Invest. 2013;123(8):3510-3524. https://doi.org/10.1172/JCI65414.
View: Text | PDF
Research Article Immunology

Medullary thymic epithelial cell depletion leads to autoimmune hepatitis

  • Text
  • PDF
Abstract

TRAF6, an E3 ubiquitin protein ligase, plays a critical role in T cell tolerance by regulating medullary thymic epithelial cell (mTEC) development. mTECs regulate T cell tolerance by ectopically expressing self-antigens and eliminating autoreactive T cells in the thymus. Here we show that mice with mTEC depletion due to conditional deletion of Traf6 expression in murine thymic epithelial cells (Traf6ΔTEC mice) showed a surprisingly narrow spectrum of autoimmunity affecting the liver. The liver inflammation in Traf6ΔTEC mice exhibited all the histological and immunological characteristics of human autoimmune hepatitis (AIH). The role of T cells in AIH establishment was supported by intrahepatic T cell population changes and AIH development after transfer of liver T cells into immunodeficient mice. Despite a 50% reduction in natural Treg thymic output, peripheral tolerance in Traf6ΔTEC mice was normal, whereas compensatory T regulatory mechanisms were evident in the liver of these animals. These data indicate that mTECs exert a cell-autonomous role in central T cell tolerance and organ-specific autoimmunity, but play a redundant role in peripheral tolerance. These findings also demonstrate that Traf6ΔTEC mice are a relevant model with which to study the pathophysiology of AIH, as well as autoantigen-specific T cell responses and regulatory mechanisms underlying this disease.

Authors

Anthony J. Bonito, Costica Aloman, M. Isabel Fiel, Nichole M. Danzl, Sungwon Cha, Erica G. Weinstein, Seihwan Jeong, Yongwon Choi, Matthew C. Walsh, Konstantina Alexandropoulos

×

Figure 1

Traf6ΔTEC mice develop peripheral autoantibodies and inflammatory infiltrates.

Options: View larger image (or click on image) Download as PowerPoint

Traf6ΔTEC mice develop peripheral autoantibodies and inflammatory infil...
(A) Images of WT and Traf6ΔTEC conditional knockout (cKO) mice. Mouse weight at approximately 6 months of age is also shown. n = 10 per genotype. Red bars represent mean. (B) Frozen tissue sections from Rag1–/– animals (used to eliminate mouse Ig background) were incubated sequentially with sera from 6- to 12-week-old WT or Traf6ΔTEC mice, and anti–mouse IgG–FITC and visualized with fluorescence microscopy. (C) Paraffin-embedded sections of organs of WT and Traf6ΔTEC mice as in B were stained with H&E and evaluated for the presence of infiltrates (arrows) by light microscopy. n ≥ 8 per genotype in B and C. Scale bars: 200 μm. ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts