Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis
Bárbara González-Terán, … , Roger J. Davis, Guadalupe Sabio
Bárbara González-Terán, … , Roger J. Davis, Guadalupe Sabio
Published December 3, 2012
Citation Information: J Clin Invest. 2013;123(1):164-178. https://doi.org/10.1172/JCI65124.
View: Text | PDF | Corrigendum
Research Article Inflammation

Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

  • Text
  • PDF
Abstract

Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved.

Authors

Bárbara González-Terán, José R. Cortés, Elisa Manieri, Nuria Matesanz, Ángeles Verdugo, María E. Rodríguez, Águeda González-Rodríguez, Ángela Valverde, Pilar Martín, Roger J. Davis, Guadalupe Sabio

×

Figure 2

ΔMKK3/6 mice have lower liver inflammation after LPS injection.

Options: View larger image (or click on image) Download as PowerPoint
ΔMKK3/6 mice have lower liver inflammation after LPS injection.
 
WT and...
WT and ΔMKK3/6 mice were treated with D-gal+LPS or saline. (A) Total RNA was extracted from livers 6 hours after treatment and chemokine mRNA levels determined by qRT-PCR. mRNA expression was normalized to Gapdh (n = 5–8). (B) Liver myeloid subsets (CD11b+Gr-1hi, CD11b+Gr-1intermediate, CD11b+Gr-1–) were assessed by flow cytometry of liver leukocytes isolated from WT and ΔMKK3/6 mice 4 and 6 hours after treatment. Representative dot plots are shown. Bar charts show each myeloid population as the percentage of total intrahepatic leukocyte population (n = 7). (C) Neutrophils as a percentage of circulating leukocytes, measured in total blood 4 hours after injection (n = 5–8). (D) TNF-α and IL-12 production by liver myeloid subsets were analyzed by intracellular staining in neutrophils (CD11b+Gr-1hi), monocytes (CD11b+Gr-1intermediate) and CD11b+Gr-1– myeloid cells isolated from WT and ΔMKK3/6 mice 4 and 6 hours after injection. Representative dot plots are shown for all treatment groups, and bar charts show TNF-α–positive cells as the percentage of each myeloid population (n = 7). Data are means ± SD. *P < 0.05; **P < 0.01; ***P < 0.001 (2-way ANOVA coupled to Bonferroni’s post tests).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts