Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Lactate preserves neuronal metabolism and function following antecedent recurrent hypoglycemia
Raimund I. Herzog, Lihong Jiang, Peter Herman, Chen Zhao, Basavaraju G. Sanganahalli, Graeme F. Mason, Fahmeed Hyder, Douglas L. Rothman, Robert S. Sherwin, Kevin L. Behar
Raimund I. Herzog, Lihong Jiang, Peter Herman, Chen Zhao, Basavaraju G. Sanganahalli, Graeme F. Mason, Fahmeed Hyder, Douglas L. Rothman, Robert S. Sherwin, Kevin L. Behar
View: Text | PDF
Research Article

Lactate preserves neuronal metabolism and function following antecedent recurrent hypoglycemia

  • Text
  • PDF
Abstract

Hypoglycemia occurs frequently during intensive insulin therapy in patients with both type 1 and type 2 diabetes and remains the single most important obstacle in achieving tight glycemic control. Using a rodent model of hypoglycemia, we demonstrated that exposure to antecedent recurrent hypoglycemia leads to adaptations of brain metabolism so that modest increments in circulating lactate allow the brain to function normally under acute hypoglycemic conditions. We characterized 3 major factors underlying this effect. First, we measured enhanced transport of lactate both into as well as out of the brain that resulted in only a small increase of its contribution to total brain oxidative capacity, suggesting that it was not the major fuel. Second, we observed a doubling of the glucose contribution to brain metabolism under hypoglycemic conditions that restored metabolic activity to levels otherwise only observed at euglycemia. Third, we determined that elevated lactate is critical for maintaining glucose metabolism under hypoglycemia, which preserves neuronal function. These unexpected findings suggest that while lactate uptake was enhanced, it is insufficient to support metabolism as an alternate substrate to replace glucose. Lactate is, however, able to modulate metabolic and neuronal activity, serving as a “metabolic regulator” instead.

Authors

Raimund I. Herzog, Lihong Jiang, Peter Herman, Chen Zhao, Basavaraju G. Sanganahalli, Graeme F. Mason, Fahmeed Hyder, Douglas L. Rothman, Robert S. Sherwin, Kevin L. Behar

×

Figure 4

Metabolic fluxes during [3-13C]-lactate infusions in control and recurrently hypoglycemic animals under clamped euglycemia and hypoglycemia.

Options: View larger image (or click on image) Download as PowerPoint
Metabolic fluxes during [3-13C]-lactate infusions in control and recurre...
(A) Unidirectional lactate uptake from blood to brain (Vin). (B) Concentration-independent Vin of lactate from blood to brain, reflecting transport changes across the blood-brain barrier (Vin/[lac]pl). (C) Unidirectional lactate outflow from brain to blood (Vout). (D) Cerebral metabolic rate of lactate oxidation (CMRlac). (E) Cerebral metabolic rate of glucose oxidation [CMRglc(ox)]. (F) Maximal glucose transport capacity into the brain [Tmax(glc)]. (G) Neuronal TCA cycle flux (VtcaN). The data reflect mean ± SEM. One-way ANOVA was used to calculate statistical significance between all 4 groups. A post-hoc analysis for prespecified comparisons (CtrlEU vs. CtrlHYPO; 3dRHEU vs. 3dRHHYPO; CtrlHYPO vs. 3dRHHYPO) was then used to determine statistically significant difference after Bonferroni correction. Symbols indicate individual rats. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts