Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia
Alejandro Gutierrez, Li Pan, Richard W.J. Groen, Frederic Baleydier, Alex Kentsis, Jason Marineau, Ruta Grebliunaite, Elena Kozakewich, Casie Reed, Francoise Pflumio, Sandrine Poglio, Benjamin Uzan, Paul Clemons, Lynn VerPlank, Frank An, Jason Burbank, Stephanie Norton, Nicola Tolliday, Hanno Steen, Andrew P. Weng, Huipin Yuan, James E. Bradner, Constantine Mitsiades, A. Thomas Look, Jon C. Aster
Alejandro Gutierrez, Li Pan, Richard W.J. Groen, Frederic Baleydier, Alex Kentsis, Jason Marineau, Ruta Grebliunaite, Elena Kozakewich, Casie Reed, Francoise Pflumio, Sandrine Poglio, Benjamin Uzan, Paul Clemons, Lynn VerPlank, Frank An, Jason Burbank, Stephanie Norton, Nicola Tolliday, Hanno Steen, Andrew P. Weng, Huipin Yuan, James E. Bradner, Constantine Mitsiades, A. Thomas Look, Jon C. Aster
View: Text | PDF
Research Article Oncology

Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia

  • Text
  • PDF
Abstract

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors. We identified the antipsychotic drug perphenazine in both screens due to its ability to induce apoptosis in fish, mouse, and human T-ALL cells. Using ligand-affinity chromatography coupled with mass spectrometry, we identified protein phosphatase 2A (PP2A) as a perphenazine target. T-ALL cell lines treated with perphenazine exhibited rapid dephosphorylation of multiple PP2A substrates and subsequent apoptosis. Moreover, shRNA knockdown of specific PP2A subunits attenuated perphenazine activity, indicating that PP2A mediates the drug’s antileukemic activity. Finally, human T-ALLs treated with perphenazine exhibited suppressed cell growth and dephosphorylation of PP2A targets in vitro and in vivo. Our findings provide a mechanistic explanation for the recurring identification of phenothiazines as a class of drugs with anticancer effects. Furthermore, these data suggest that pharmacologic PP2A activation in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates has therapeutic potential.

Authors

Alejandro Gutierrez, Li Pan, Richard W.J. Groen, Frederic Baleydier, Alex Kentsis, Jason Marineau, Ruta Grebliunaite, Elena Kozakewich, Casie Reed, Francoise Pflumio, Sandrine Poglio, Benjamin Uzan, Paul Clemons, Lynn VerPlank, Frank An, Jason Burbank, Stephanie Norton, Nicola Tolliday, Hanno Steen, Andrew P. Weng, Huipin Yuan, James E. Bradner, Constantine Mitsiades, A. Thomas Look, Jon C. Aster

×

Figure 9

PPZ inhibits growth and dephosphorylates PP2A targets in primary human T-ALL cells in vivo.

Options: View larger image (or click on image) Download as PowerPoint
PPZ inhibits growth and dephosphorylates PP2A targets in primary human T...
(A and B) Effects of treatment with PPZ (10 mg/kg/d) on growth of human hTALL2 cells in NSG mice. (A) Effects on tumor cell growth were assessed by measuring the bioluminescence of luciferized hTALL2 cells in subcutaneous calcium phosphate scaffolds seeded with human mesenchymal stem cells. Arrow indicates the time of initiation of PPZ treatment. *P < 0.0182. (B) Spleen weights of treatment and control mice at times of necropsy. *P < 0.05. (C) Western blots prepared from hTALL2 cells harvested from engrafted mice 3 hours after a single dose of PPZ (10 mg/kg). Each lane corresponds to a different animal. The blot stained for phospho-p70S6K and total p70S6K was prepared from a second gel that was loaded with the same samples and run in parallel.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts