Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation
Sutada Lotinun, … , William C. Horne, Roland Baron
Sutada Lotinun, … , William C. Horne, Roland Baron
Published January 16, 2013
Citation Information: J Clin Invest. 2013;123(2):666-681. https://doi.org/10.1172/JCI64840.
View: Text | PDF
Research Article Bone Biology

Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation

  • Text
  • PDF
Abstract

Cathepsin K (CTSK) is secreted by osteoclasts to degrade collagen and other matrix proteins during bone resorption. Global deletion of Ctsk in mice decreases bone resorption, leading to osteopetrosis, but also increases the bone formation rate (BFR). To understand how Ctsk deletion increases the BFR, we generated osteoclast- and osteoblast-targeted Ctsk knockout mice using floxed Ctsk alleles. Targeted ablation of Ctsk in hematopoietic cells, or specifically in osteoclasts and cells of the monocyte-osteoclast lineage, resulted in increased bone volume and BFR as well as osteoclast and osteoblast numbers. In contrast, targeted deletion of Ctsk in osteoblasts had no effect on bone resorption or BFR, demonstrating that the increased BFR is osteoclast dependent. Deletion of Ctsk in osteoclasts increased their sphingosine kinase 1 (Sphk1) expression. Conditioned media from Ctsk-deficient osteoclasts, which contained elevated levels of sphingosine-1-phosphate (S1P), increased alkaline phosphatase and mineralized nodules in osteoblast cultures. An S1P1,3 receptor antagonist inhibited these responses. Osteoblasts derived from mice with Ctsk-deficient osteoclasts had an increased RANKL/OPG ratio, providing a positive feedback loop that increased the number of osteoclasts. Our data provide genetic evidence that deletion of CTSK in osteoclasts enhances bone formation in vivo by increasing the generation of osteoclast-derived S1P.

Authors

Sutada Lotinun, Riku Kiviranta, Takuma Matsubara, Jorge A. Alzate, Lynn Neff, Anja Lüth, Ilpo Koskivirta, Burkhard Kleuser, Jean Vacher, Eero Vuorio, William C. Horne, Roland Baron

×

Figure 12

S1P is increased in the absence of cathepsin K, and blocking S1P activity attenuates ALP activity and mineralization induced by Ctsk-deficient and control osteoclast–conditioned medium.

Options: View larger image (or click on image) Download as PowerPoint
S1P is increased in the absence of cathepsin K, and blocking S1P activit...
(A) Mx1;Ctskfl/fl osteoclast–conditioned medium contained elevated levels of S1P. (B) CD1 calvarial osteoblasts were treated with either Mx1;Ctskfl/fl or Ctskfl/fl osteoclast–conditioned medium for 7 days and stained with ALP, or for 20 days and stained with alizarin red in the presence or absence of VPC23019 (VPC). Original magnification, ×1. (C) ALP activity (n = 5 per group) and mineralization (n = 6 per group) were quantified. Results are mean ± SEM. *P < 0.05 versus controls.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts