Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses
Satoshi Okumura, … , Hikaru Tanaka, Yoshihiro Ishikawa
Satoshi Okumura, … , Hikaru Tanaka, Yoshihiro Ishikawa
Published April 24, 2014
Citation Information: J Clin Invest. 2014;124(6):2785-2801. https://doi.org/10.1172/JCI64784.
View: Text | PDF
Research Article Cardiology

Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses

  • Text
  • PDF
Abstract

PKA phosphorylates multiple molecules involved in calcium (Ca2+) handling in cardiac myocytes and is considered to be the predominant regulator of β-adrenergic receptor–mediated enhancement of cardiac contractility; however, recent identification of exchange protein activated by cAMP (EPAC), which is independently activated by cAMP, has challenged this paradigm. Mice lacking Epac1 (Epac1 KO) exhibited decreased cardiac contractility with reduced phospholamban (PLN) phosphorylation at serine-16, the major PKA-mediated phosphorylation site. In Epac1 KO mice, intracellular Ca2+ storage and the magnitude of Ca2+ movement were decreased; however, PKA expression remained unchanged, and activation of PKA with isoproterenol improved cardiac contractility. In contrast, direct activation of EPAC in cardiomyocytes led to increased PLN phosphorylation at serine-16, which was dependent on PLC and PKCε. Importantly, Epac1 deletion protected the heart from various stresses, while Epac2 deletion was not protective. Compared with WT mice, aortic banding induced a similar degree of cardiac hypertrophy in Epac1 KO; however, lack of Epac1 prevented subsequent cardiac dysfunction as a result of decreased cardiac myocyte apoptosis and fibrosis. Similarly, Epac1 KO animals showed resistance to isoproterenol- and aging-induced cardiomyopathy and attenuation of arrhythmogenic activity. These data support Epac1 as an important regulator of PKA-independent PLN phosphorylation and indicate that Epac1 regulates cardiac responsiveness to various stresses.

Authors

Satoshi Okumura, Takayuki Fujita, Wenqian Cai, Meihua Jin, Iyuki Namekata, Yasumasa Mototani, Huiling Jin, Yoshiki Ohnuki, Yayoi Tsuneoka, Reiko Kurotani, Kenji Suita, Yuko Kawakami, Shogo Hamaguchi, Takaya Abe, Hiroshi Kiyonari, Takashi Tsunematsu, Yunzhe Bai, Sayaka Suzuki, Yuko Hidaka, Masanari Umemura, Yasuhiro Ichikawa, Utako Yokoyama, Motohiko Sato, Fumio Ishikawa, Hiroko Izumi-Nakaseko, Satomi Adachi-Akahane, Hikaru Tanaka, Yoshihiro Ishikawa

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 835 94
PDF 86 21
Figure 479 2
Table 48 0
Supplemental data 87 3
Citation downloads 87 0
Totals 1,622 120
Total Views 1,742
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts