Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling
Satish Pasula, … , Wang Min, Hong Chen
Satish Pasula, … , Wang Min, Hong Chen
Published November 26, 2012
Citation Information: J Clin Invest. 2012;122(12):4424-4438. https://doi.org/10.1172/JCI64537.
View: Text | PDF
Research Article

Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling

  • Text
  • PDF
Abstract

Epsins are a family of ubiquitin-binding, endocytic clathrin adaptors. Mice lacking both epsins 1 and 2 (Epn1/2) die at embryonic day 10 and exhibit an abnormal vascular phenotype. To examine the angiogenic role of endothelial epsins, we generated mice with constitutive or inducible deletion of Epn1/2 in vascular endothelium. These mice exhibited no abnormal phenotypes under normal conditions, suggesting that lack of endothelial epsins 1 and 2 did not affect normal blood vessels. In tumors, however, loss of epsins 1 and 2 resulted in disorganized vasculature, significantly increased vascular permeability, and markedly retarded tumor growth. Mechanistically, we show that VEGF promoted binding of epsin to ubiquitinated VEGFR2. Loss of epsins 1 and 2 specifically impaired endocytosis and degradation of VEGFR2, which resulted in excessive VEGF signaling that compromised tumor vascular function by exacerbating nonproductive leaky angiogenesis. This suggests that tumor vasculature requires a balance in VEGF signaling to provide sufficient productive angiogenesis for tumor development and that endothelial epsins 1 and 2 negatively regulate the output of VEGF signaling. Promotion of excessive VEGF signaling within tumors via a block of epsin 1 and 2 function may represent a strategy to prevent normal angiogenesis in cancer patients who are resistant to anti-VEGF therapies.

Authors

Satish Pasula, Xiaofeng Cai, Yunzhou Dong, Mirko Messa, John McManus, Baojun Chang, Xiaolei Liu, Hua Zhu, Robert Silasi Mansat, Seon-Joo Yoon, Scott Hahn, Jacob Keeling, Debra Saunders, Genevieve Ko, John Knight, Gail Newton, Francis Luscinskas, Xiaohong Sun, Rheal Towner, Florea Lupu, Lijun Xia, Ottavio Cremona, Pietro De Camilli, Wang Min, Hong Chen

×

Figure 1

Loss of endothelial epsins 1 and 2 retards tumor growth.

Options: View larger image (or click on image) Download as PowerPoint
Loss of endothelial epsins 1 and 2 retards tumor growth.
(A) LLC tumor s...
(A) LLC tumor size was measured every other day from day 9 through 19 after inoculation of LLC tumor cells into WT and EC-iDKO mice. LLC tumor incidence is shown on right. (B) Melanoma tumor size measured in WT and EC-iDKO from day 10 through 20 after inoculation of melanoma tumor cells. Melanoma tumor incidence is on right. (C) Average tumor volume of mouse brain T2-weighted MRI images for WT and EC-iDKO gliomas 24 days following GL261 cells injection. (D) Percentage of glioma cancer survival rate in WT and EC-iDKO mice. (E) The number of tumors observed in the colorectal region of WT and EC-iDKO mice euthanized after indicated number of weeks after AOM and DSS treatment. (F) Percentage of male TRAMP mice surviving in the presence or absence of endothelial epsins 1 and 2.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts