Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Exposure of human islets to cytokines can result in disproportionately elevated proinsulin release
Katleen Hostens, … , Décio L. Eizirik, Daniel G. Pipeleers
Katleen Hostens, … , Décio L. Eizirik, Daniel G. Pipeleers
Published July 1, 1999
Citation Information: J Clin Invest. 1999;104(1):67-72. https://doi.org/10.1172/JCI6438.
View: Text | PDF
Article

Exposure of human islets to cytokines can result in disproportionately elevated proinsulin release

  • Text
  • PDF
Abstract

Infiltration of immunocytes into pancreatic islets precedes loss of β cells in type 1 diabetes. It is conceivable that local release of cytokines affects the function of β cells before their apoptosis. This study examines whether the elevated proinsulin levels that have been described in prediabetes can result from exposure of β cells to cytokines. Human β-cell preparations were cultured for 48 or 72 hours with or without IL-1β, TNF-α, or IFN-γ, alone or in combination. None of these conditions were cytotoxic, nor did they reduce insulin biosynthetic activity. Single cytokines did not alter medium or cellular content in insulin or proinsulin. Cytokine combinations, in particular IL-1β plus IFN-γ, disproportionately elevated medium proinsulin levels. This effect expresses an altered functional state of the β cells characterized by preserved proinsulin synthesis, a slower hormone conversion, and an increased ratio of cellular proinsulin over insulin content. The delay in proinsulin conversion can be attributed to lower expression of PC1 and PC2 convertases. It is concluded that disproportionately elevated proinsulin levels in pre–type 1 diabetic patients might result from exposure of their β cells to cytokines released from infiltrating immunocytes. This hormonal alteration expresses an altered functional state of the β cells that can occur independently of β-cell death.

Authors

Katleen Hostens, Dejan Pavlovic, Yasmeeni Zambre, Zhidong Ling, Christiaan Van Schravendijk, Décio L. Eizirik, Daniel G. Pipeleers

×
Options: View larger image (or click on image) Download as PowerPoint
Effect of L-MA on cytokine-induced increase in proinsulin release

Effect of L-MA on cytokine-induced increase in proinsulin release


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts