Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Improved regenerative myogenesis and muscular dystrophy in mice lacking Mkp5
Hao Shi, … , Richard A. Flavell, Anton M. Bennett
Hao Shi, … , Richard A. Flavell, Anton M. Bennett
Published April 1, 2013
Citation Information: J Clin Invest. 2013;123(5):2064-2077. https://doi.org/10.1172/JCI64375.
View: Text | PDF
Research Article Muscle biology

Improved regenerative myogenesis and muscular dystrophy in mice lacking Mkp5

  • Text
  • PDF
Abstract

Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease caused by mutations in dystrophin. The degree of functional deterioration in muscle stem cells determines the severity of DMD. The mitogen-activated protein kinases (MAPKs), which are inactivated by MAPK phosphatases (MKPs), represent a central signaling node in the regulation of muscle stem cell function. Here we show that the dual-specificity protein phosphatase DUSP10/MKP-5 negatively regulates muscle stem cell function in mice. MKP-5 controlled JNK to coordinate muscle stem cell proliferation and p38 MAPK to control differentiation. Genetic loss of Mkp5 in mice improved regenerative myogenesis and dystrophin-deficient mdx mice lacking Mkp5 exhibited an attenuated dystrophic muscle phenotype. Hence, enhanced promyogenic MAPK activity preserved muscle stem cell function even in the absence of dystrophin and ultimately curtailed the pathogenesis associated with DMD. These results identify MKP-5 as an essential negative regulator of the promyogenic actions of the MAPKs and suggest that MKP-5 may serve as a target to promote muscle stem cell function in the treatment of degenerative skeletal muscle diseases.

Authors

Hao Shi, Mayank Verma, Lei Zhang, Chen Dong, Richard A. Flavell, Anton M. Bennett

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 590 89
PDF 79 26
Figure 457 7
Supplemental data 52 3
Citation downloads 57 0
Totals 1,235 125
Total Views 1,360
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts