Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression
Antonio F. Santidrian, … , Takao Yagi, Brunhilde Felding-Habermann
Antonio F. Santidrian, … , Takao Yagi, Brunhilde Felding-Habermann
Published February 15, 2013
Citation Information: J Clin Invest. 2013;123(3):1068-1081. https://doi.org/10.1172/JCI64264.
View: Text | PDF
Research Article Oncology

Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression

  • Text
  • PDF
Abstract

Despite advances in clinical therapy, metastasis remains the leading cause of death in breast cancer patients. Mutations in mitochondrial DNA, including those affecting complex I and oxidative phosphorylation, are found in breast tumors and could facilitate metastasis. This study identifies mitochondrial complex I as critical for defining an aggressive phenotype in breast cancer cells. Specific enhancement of mitochondrial complex I activity inhibited tumor growth and metastasis through regulation of the tumor cell NAD+/NADH redox balance, mTORC1 activity, and autophagy. Conversely, nonlethal reduction of NAD+ levels by interfering with nicotinamide phosphoribosyltransferase expression rendered tumor cells more aggressive and increased metastasis. The results translate into a new therapeutic strategy: enhancement of the NAD+/NADH balance through treatment with NAD+ precursors inhibited metastasis in xenograft models, increased animal survival, and strongly interfered with oncogene-driven breast cancer progression in the MMTV-PyMT mouse model. Thus, aberration in mitochondrial complex I NADH dehydrogenase activity can profoundly enhance the aggressiveness of human breast cancer cells, while therapeutic normalization of the NAD+/NADH balance can inhibit metastasis and prevent disease progression.

Authors

Antonio F. Santidrian, Akemi Matsuno-Yagi, Melissa Ritland, Byoung B. Seo, Sarah E. LeBoeuf, Laurie J. Gay, Takao Yagi, Brunhilde Felding-Habermann

×

Figure 8

NAD+ precursor treatment inhibits spontaneous breast cancer progression in MMTV-PYMT mice.

Options: View larger image (or click on image) Download as PowerPoint
NAD+ precursor treatment inhibits spontaneous breast cancer progression ...
(A) NAM treatment (1% in drinking water throughout experiment, beginning at weaning) reduced mammary tumor growth. Weights of all 10 mammary fat pads from each treated mouse (n = 10), untreated control mice (n = 11), and untreated age- and strain-matched PyMT-negative mice (Normal; n = 3). Boxes denote interquartile range; lines within boxes denote median; whiskers denote minima and maxima. ***P < 0.001, nonparametric Mann-Whitney test. (B) Fat pads of untreated versus NAM-treated PyMT mice, representative of the 10 fat pad locations. (C) NAM treatment inhibited PyMT-induced breast cancer progression. Percent area of morphological stages of 8 representative fat pads from untreated (PyMT-Ctrl) or NAM-treated (PyMT-NAM) mice. Averages from each group are shown below. Scoring of hyperplasia, adenoma, and early and advanced carcinoma was performed on whole-slide scans of H&E-stained tumor sections by morphometric measurements. (D) Representative microscopic fields of 2 H&E-stained sections from 4 tumors of untreated and NAM-treated PyMT mice. Scale bars: 200 μm (top row for each treatment group); 50 μm (bottom row). (E) Quantification of Western blot analyses of mammary tumors from control and NAM-treated PyMT mice (n = 8 tumors per group). Shown is relative protein abundance of p62, phospho-S6Ser240/244, and phospho-4EBPThr37/46. Boxes denote interquartile range; lines within boxes denote median; whiskers denote minima and maxima. ***P < 0.001, unpaired 2-tailed Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts