Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
11β-Hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects
Ana Tiganescu, … , Gareth G. Lavery, Paul M. Stewart
Ana Tiganescu, … , Gareth G. Lavery, Paul M. Stewart
Published June 3, 2013
Citation Information: J Clin Invest. 2013;123(7):3051-3060. https://doi.org/10.1172/JCI64162.
View: Text | PDF
Research Article Aging

11β-Hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects

  • Text
  • PDF
Abstract

Glucocorticoid (GC) excess adversely affects skin integrity, inducing thinning and impaired wound healing. Aged skin, particularly that which has been photo-exposed, shares a similar phenotype. Previously, we demonstrated age-induced expression of the GC-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in cultured human dermal fibroblasts (HDFs). Here, we determined 11β-HSD1 levels in human skin biopsies from young and older volunteers and examined the aged 11β-HSD1 KO mouse skin phenotype. 11β-HSD1 activity was elevated in aged human and mouse skin and in PE compared with donor-matched photo-protected human biopsies. Age-induced dermal atrophy with deranged collagen structural organization was prevented in 11β-HSD1 KO mice, which also exhibited increased collagen density. We found that treatment of HDFs with physiological concentrations of cortisol inhibited rate-limiting steps in collagen biosynthesis and processing. Furthermore, topical 11β-HSD1 inhibitor treatment accelerated healing of full-thickness mouse dorsal wounds, with improved healing also observed in aged 11β-HSD1 KO mice. These findings suggest that elevated 11β-HSD1 activity in aging skin leads to increased local GC generation, which may account for adverse changes occurring in the elderly, and 11β-HSD1 inhibitors may be useful in the treatment of age-associated impairments in dermal integrity and wound healing.

Authors

Ana Tiganescu, Abd A. Tahrani, Stuart A. Morgan, Marcela Otranto, Alexis Desmoulière, Lianne Abrahams, Zaki Hassan-Smith, Elizabeth A. Walker, Elizabeth H. Rabbitt, Mark S. Cooper, Kurt Amrein, Gareth G. Lavery, Paul M. Stewart

×

Figure 1

11β-HSD1 activity increases in aging skin ex vivo.

Options: View larger image (or click on image) Download as PowerPoint
11β-HSD1 activity increases in aging skin ex vivo.
(A) 11β-HSD1 activity...
(A) 11β-HSD1 activity (percentage of conversion of 100 nM cortisone to cortisol) was greater in aged (>60 years) versus young (20–30 years) human skin in both PP (n = 20) and PE (n = 20) biopsies. Activity was also greater in donor-matched PE versus PP samples from young (n = 20) and aged (n = 20) donors. (B) 11β-HSD1 activity (pmol/mg/h) was also greater in older (91–99 weeks; n = 5) versus younger (11–20 weeks; n = 10) mouse skin. *P < 0.05; **P < 0.01.

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts