Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Gain of glycosylation in integrin α3 causes lung disease and nephrotic syndrome
Nayia Nicolaou, … , Kirsten Y. Renkema, Arnoud Sonnenberg
Nayia Nicolaou, … , Kirsten Y. Renkema, Arnoud Sonnenberg
Published November 1, 2012
Citation Information: J Clin Invest. 2012;122(12):4375-4387. https://doi.org/10.1172/JCI64100.
View: Text | PDF
Research Article Nephrology

Gain of glycosylation in integrin α3 causes lung disease and nephrotic syndrome

  • Text
  • PDF
Abstract

Integrins are transmembrane αβ glycoproteins that connect the extracellular matrix to the cytoskeleton. The laminin-binding integrin α3β1 is expressed at high levels in lung epithelium and in kidney podocytes. In podocytes, α3β1 associates with the tetraspanin CD151 to maintain a functional filtration barrier. Here, we report on a patient homozygous for a novel missense mutation in the human ITGA3 gene, causing fatal interstitial lung disease and congenital nephrotic syndrome. The mutation caused an alanine-to-serine substitution in the integrin α3 subunit, thereby introducing an N-glycosylation motif at amino acid position 349. We expressed this mutant form of ITGA3 in murine podocytes and found that hyperglycosylation of the α3 precursor prevented its heterodimerization with β1, whereas CD151 association with the α3 subunit occurred normally. Consequently, the β1 precursor accumulated in the ER, and the mutant α3 precursor was degraded by the ubiquitin-proteasome system. Thus, these findings uncover a gain-of-glycosylation mutation in ITGA3 that prevents the biosynthesis of functional α3β1, causing a fatal multiorgan disorder.

Authors

Nayia Nicolaou, Coert Margadant, Sietske H. Kevelam, Marc R. Lilien, Michiel J.S. Oosterveld, Maaike Kreft, Albertien M. van Eerde, Rolph Pfundt, Paulien A. Terhal, Bert van der Zwaag, Peter G.J. Nikkels, Norman Sachs, Roel Goldschmeding, Nine V.A.M. Knoers, Kirsten Y. Renkema, Arnoud Sonnenberg

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 855 129
PDF 107 55
Figure 269 2
Supplemental data 22 1
Citation downloads 34 0
Totals 1,287 187
Total Views 1,474
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts