Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
KrasG12D and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung
Yutaka Maeda, … , Takeshi Nagayasu, Jeffrey A. Whitsett
Yutaka Maeda, … , Takeshi Nagayasu, Jeffrey A. Whitsett
Published November 12, 2012
Citation Information: J Clin Invest. 2012;122(12):4388-4400. https://doi.org/10.1172/JCI64048.
View: Text | PDF
Research Article Oncology

KrasG12D and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung

  • Text
  • PDF
Abstract

Mucinous adenocarcinoma of the lung is a subtype of highly invasive pulmonary tumors and is associated with decreased or absent expression of the transcription factor NK2 homeobox 1 (NKX2-1; also known as TTF-1). Here, we show that haploinsufficiency of Nkx2-1 in combination with oncogenic KrasG12D, but not with oncogenic EGFRL858R, caused pulmonary tumors in transgenic mice that were phenotypically similar to human mucinous adenocarcinomas. Gene expression patterns distinguished tumor goblet (mucous) cells from nontumorigenic airway and intestinal goblet cells. Expression of NKX2-1 inhibited urethane and oncogenic KrasG12D-induced tumorigenesis in vivo. Haploinsufficiency of Nkx2-1 enhanced KrasG12D-mediated tumor progression, but reduced EGFRL858R-mediated progression. Genome-wide analysis of gene expression demonstrated that a set of genes induced in mucinous tumors was shared with genes induced in a nontumorigenic chronic lung disease, while a distinct subset of genes was specific to mucinous tumors. ChIP with massively parallel DNA sequencing identified a direct association of NKX2-1 with the genes induced in mucinous tumors. NKX2-1 associated with the AP-1 binding element as well as the canonical NKX2-1 binding element. NKX2-1 inhibited both AP-1 activity and tumor colony formation in vitro. These data demonstrate that NKX2-1 functions in a context-dependent manner in lung tumorigenesis and inhibits KrasG12D-driven mucinous pulmonary adenocarcinoma.

Authors

Yutaka Maeda, Tomoshi Tsuchiya, Haiping Hao, David H. Tompkins, Yan Xu, Michael L. Mucenski, Lingling Du, Angela R. Keiser, Takuya Fukazawa, Yoshio Naomoto, Takeshi Nagayasu, Jeffrey A. Whitsett

×

Figure 5

EGFRL858R mice did not develop mucinous adenocarcinoma of the lung regardless of Nkx2-1 expression.

Options: View larger image (or click on image) Download as PowerPoint

EGFRL858R mice did not develop mucinous adenocarcinoma of the lung rega...
(A) Number and volume of lung tumors, measured by microCT, were decreased in EGFRL858R;Nkx2-1+/– (n = 19) compared with EGFRL858R;Nkx2-1+/+ (n = 13) mice 4 months after Dox administration. n = 16 (control). (B) Lung sections were stained with Alcian blue, MUC5AC, and MUC5B. Mucinous tumors were not observed in EGFRL858R;Nkx2-1+/– or EGFRL858R;Nkx2-1+/+ mice. Tumor cells in lungs of EGFRL858R;Nkx2-1+/+ and EGFRL858R;Nkx2-1+/– mice did not stain with Alcian blue or MUC5AC, whereas tumor cells in lungs of EGFRL858R;Nkx2-1+/– mice stained with MUC5B. (C) MUC5AC mRNA was highly expressed in NKX2-1–negative KRAS mutant lung carcinoma cell lines (H2122 and A549), but not in EGFR mutant lung carcinoma cell lines. MUC5B mRNA was expressed in both KRAS mutant (H2122 and A549) and EGFR mutant (H3255) cell lines. Shown is fold induction compared with mRNA expression of H3255 cells. Results are mean ± SEM (A) and mean ± SD of triplicates for each group (C). N.D., not detectable. *P < 0.05. Scale bars: 100 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts