Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Adipocyte-derived endotrophin promotes malignant tumor progression
Jiyoung Park, Philipp E. Scherer
Jiyoung Park, Philipp E. Scherer
Published October 8, 2012
Citation Information: J Clin Invest. 2012;122(11):4243-4256. https://doi.org/10.1172/JCI63930.
View: Text | PDF
Research Article Oncology

Adipocyte-derived endotrophin promotes malignant tumor progression

  • Text
  • PDF
Abstract

Adipocytes represent a major cell type in the mammary tumor microenvironment and are important for tumor growth. Collagen VI (COL6) is highly expressed in adipose tissue, upregulated in the obese state, and enriched in breast cancer lesions and is a stimulator of mammary tumor growth. Here, we have described a cleavage product of the COL6α3 chain, endotrophin (ETP), which serves as the major mediator of the COL6-mediated tumor effects. ETP augmented fibrosis, angiogenesis, and inflammation through recruitment of macrophages and endothelial cells. Moreover, ETP expression was associated with aggressive mammary tumor growth and high metastatic growth. These effects were partially mediated through enhanced TGF-β signaling, which contributes to tissue fibrosis and epithelial-mesenchymal transition (EMT) of tumor cells. Our results highlight the crucial role of ETP as an obesity-associated factor that promotes tumor growth in the context of adipocyte interactions with tumor and stromal cells.

Authors

Jiyoung Park, Philipp E. Scherer

×

Figure 3

ETP levels in human cancer specimens and its target tissues.

Options: View larger image (or click on image) Download as PowerPoint
ETP levels in human cancer specimens and its target tissues.
(A and B) H...
(A and B) Human cancer tissues compared with those of benign tissues were immunostained with human ETP–specific polyclonal antibody. Human samples for breast cancer (A) and colon cancer (B) were analyzed. Scale bars: 25 μm. (C and D) Whole body in vivo imaging of injected ETP. IRD-800 fluorescence–labeled ETP protein (10 μg) was intravenously injected into WT, 8-week-old PyMT, and 10-week-old PyMT mice by tail vein. (C) ETP levels were visualized by the Licor Infrared Scanner 10–90 minutes after injection. Arrows indicate mammary tumors. L, liver; B, bladder; T, tumor. IgG was used as a negative control. (D) Tissues were excised 2 hours after injection, and ETP-positive fluorescence signals were determined with a Licor Infrared Scanner. Quantified values were normalized to total area and represented as percentage of WT. ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts