Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Compromised genomic integrity impedes muscle growth after Atrx inactivation
Michael S. Huh, … , Michael A. Rudnicki, David J. Picketts
Michael S. Huh, … , Michael A. Rudnicki, David J. Picketts
Published November 1, 2012
Citation Information: J Clin Invest. 2012;122(12):4412-4423. https://doi.org/10.1172/JCI63765.
View: Text | PDF
Research Article Muscle biology

Compromised genomic integrity impedes muscle growth after Atrx inactivation

  • Text
  • PDF
Abstract

ATR-X syndrome is a severe intellectual disability disorder caused by mutations in the ATRX gene. Many ancillary clinical features are attributed to CNS deficiencies, yet most patients have muscle hypotonia, delayed ambulation, or kyphosis, pointing to an underlying skeletal muscle defect. Here, we identified a cell-intrinsic requirement for Atrx in postnatal muscle growth and regeneration in mice. Mice with skeletal muscle–specific Atrx conditional knockout (Atrx cKO mice) were viable, but by 3 weeks of age presented hallmarks of underdeveloped musculature, including kyphosis, 20% reduction in body mass, and 34% reduction in muscle fiber caliber. Atrx cKO mice also demonstrated a marked regeneration deficit that was not due to fewer resident satellite cells or their inability to terminally differentiate. However, activation of Atrx-null satellite cells from isolated muscle fibers resulted in a 9-fold reduction in myoblast expansion, caused by delayed progression through mid to late S phase. While in S phase, Atrx colocalized specifically to late-replicating chromatin, and its loss resulted in rampant signs of genomic instability. These observations support a model in which Atrx maintains chromatin integrity during the rapid developmental growth of a tissue.

Authors

Michael S. Huh, Tina Price O’Dea, Dahmane Ouazia, Bruce C. McKay, Gianni Parise, Robin J. Parks, Michael A. Rudnicki, David J. Picketts

×

Figure 4

Atrx depletion delays S phase and induces accumulation of p53 protein.

Options: View larger image (or click on image) Download as PowerPoint
Atrx depletion delays S phase and induces accumulation of p53 protein.
(...
(A) Immunoblot analysis of p53 protein levels after infection with Ad-LacZ (–) or Ad-Cre (+). Infected cells were untreated (NT) or treated with hydroxyurea (HU) or colchicine (Col) for the indicated times, and then protein samples were harvested. β-Actin was used as loading control. (B) Flow cytometry cell cycle progression analysis of BrdU– population from Atrxf/y:Ad-LacZ and Atrxf/y:Ad-Cre myoblasts. Graphs represent percent BrdU– cells in the G1, S, and G2/M gates at the indicated time points after the moment of BrdU removal (0 hour). Data are mean ± SEM (n = 4). *P < 0.05, t test. (C) S phase–specific double immunostaining for Atrx and BrdU. Atrxf/y myoblasts were pulsed for 20 minutes with BrdU and immediately fixed. Atrx colocalized to late replicating regions of DNA (red box), but did not colocalize with early replicating DNA (blue box). Original magnification, ×630 (C). Boxed regions are enlarged ×3 at right.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts