Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Compromised genomic integrity impedes muscle growth after Atrx inactivation
Michael S. Huh, … , Michael A. Rudnicki, David J. Picketts
Michael S. Huh, … , Michael A. Rudnicki, David J. Picketts
Published November 1, 2012
Citation Information: J Clin Invest. 2012;122(12):4412-4423. https://doi.org/10.1172/JCI63765.
View: Text | PDF
Research Article Muscle biology

Compromised genomic integrity impedes muscle growth after Atrx inactivation

  • Text
  • PDF
Abstract

ATR-X syndrome is a severe intellectual disability disorder caused by mutations in the ATRX gene. Many ancillary clinical features are attributed to CNS deficiencies, yet most patients have muscle hypotonia, delayed ambulation, or kyphosis, pointing to an underlying skeletal muscle defect. Here, we identified a cell-intrinsic requirement for Atrx in postnatal muscle growth and regeneration in mice. Mice with skeletal muscle–specific Atrx conditional knockout (Atrx cKO mice) were viable, but by 3 weeks of age presented hallmarks of underdeveloped musculature, including kyphosis, 20% reduction in body mass, and 34% reduction in muscle fiber caliber. Atrx cKO mice also demonstrated a marked regeneration deficit that was not due to fewer resident satellite cells or their inability to terminally differentiate. However, activation of Atrx-null satellite cells from isolated muscle fibers resulted in a 9-fold reduction in myoblast expansion, caused by delayed progression through mid to late S phase. While in S phase, Atrx colocalized specifically to late-replicating chromatin, and its loss resulted in rampant signs of genomic instability. These observations support a model in which Atrx maintains chromatin integrity during the rapid developmental growth of a tissue.

Authors

Michael S. Huh, Tina Price O’Dea, Dahmane Ouazia, Bruce C. McKay, Gianni Parise, Robin J. Parks, Michael A. Rudnicki, David J. Picketts

×

Figure 2

Atrx cKO muscle has normal numbers of satellite cells, yet is unable to efficiently expand the myoblast population when activated in culture.

Options: View larger image (or click on image) Download as PowerPoint

Atrx cKO muscle has normal numbers of satellite cells, yet is unable to...
(A) Double-immunofluorescent micrograph of Atrx and Pax7 from freshly isolated Atrxf/y and Atrx cKO EDL myofiber. Pax7+ satellite cells were still present in Atrx cKO myofibers (yellow arrowheads). (B) Myoblast proliferation index of activated satellite cells from single muscle fiber cultures in suspension. Single muscle fibers isolated from Atrxf/y and Atrx cKO EDL muscles were immediately fixed (0 hours) or were grown in BrdU-supplemented GM, then harvested and fixed after 6 and 48 hours in culture. Immunostaining for Pax7 (0 hours) and BrdU (6 and 48 hours) was performed, and positive nuclei were enumerated. Values represent mean ± SEM. Atrxf/y, 88 fibers (n = 4); Atrx cKO, 66 fibers (n = 3). **P < 0.01, t test. (C) Myoblast counts from single muscle fibers after 6 days in culture. Single EDL muscle fibers from Atrxf/y and Atrx cKO mice were plated onto a Matrigel substrate and fixed after 6 days in culture. Desmin+ myoblasts were enumerated for each fiber (inset). Atrxf/y, 58 fibers (n = 2), Atrx cKO, 64 fibers (n = 4). Box plots represent quartile distribution of Desmin+ myoblasts per fiber. Original magnification, ×400 (A); ×200 (C).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts