Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Tumor fibroblast–derived epiregulin promotes growth of colitis-associated neoplasms through ERK
Clemens Neufert, Christoph Becker, Özlem Türeci, Maximilian J. Waldner, Ingo Backert, Katharina Floh, Imke Atreya, Moritz Leppkes, Andre Jefremow, Michael Vieth, Regine Schneider-Stock, Patricia Klinger, Florian R. Greten, David W. Threadgill, Ugur Sahin, Markus F. Neurath
Clemens Neufert, Christoph Becker, Özlem Türeci, Maximilian J. Waldner, Ingo Backert, Katharina Floh, Imke Atreya, Moritz Leppkes, Andre Jefremow, Michael Vieth, Regine Schneider-Stock, Patricia Klinger, Florian R. Greten, David W. Threadgill, Ugur Sahin, Markus F. Neurath
View: Text | PDF
Research Article Oncology

Tumor fibroblast–derived epiregulin promotes growth of colitis-associated neoplasms through ERK

  • Text
  • PDF
Abstract

Molecular mechanisms specific to colitis-associated cancers have been poorly characterized. Using comparative whole-genome expression profiling, we observed differential expression of epiregulin (EREG) in mouse models of colitis-associated, but not sporadic, colorectal cancer. Similarly, EREG expression was significantly upregulated in cohorts of patients with colitis-associated cancer. Furthermore, tumor-associated fibroblasts were identified as a major source of EREG in colitis-associated neoplasms. Functional studies showed that Ereg-deficient mice, although more prone to colitis, were strongly protected from colitis-associated tumors. Serial endoscopic studies revealed that EREG promoted tumor growth rather than initiation. Additionally, we demonstrated that fibroblast-derived EREG requires ERK activation to induce proliferation of intestinal epithelial cells (IEC) and tumor development in vivo. To demonstrate the functional relevance of EREG-producing tumor-associated fibroblasts, we developed a novel system for adoptive transfer of these cells via mini-endoscopic local injection. It was found that transfer of EREG-producing, but not Ereg-deficient, fibroblasts from tumors significantly augmented growth of colitis-associated neoplasms in vivo. In conclusion, our data indicate that EREG and tumor-associated fibroblasts play a crucial role in controlling tumor growth in colitis-associated neoplasms.

Authors

Clemens Neufert, Christoph Becker, Özlem Türeci, Maximilian J. Waldner, Ingo Backert, Katharina Floh, Imke Atreya, Moritz Leppkes, Andre Jefremow, Michael Vieth, Regine Schneider-Stock, Patricia Klinger, Florian R. Greten, David W. Threadgill, Ugur Sahin, Markus F. Neurath

×

Figure 8

Fibroblasts are the main producers of EREG in colitis-associated tumors.

Options: View larger image (or click on image) Download as PowerPoint
Fibroblasts are the main producers of EREG in colitis-associated tumors....
(A) Consecutive rectosigmoidal cross sections (nos. 1–6) of 4-μm thickness from AOM/DSS-tumors of lacZ-Ereg-reporter mice were stained with X-gal plus eosin (left panels) or with specific antibodies against fibroblast markers as indicated (right panels). Representative brightfield and confocal immunohistochemical images are shown. Arrows indicate double-positive cells in consecutive sections. Scale bars: 25 μm. (B) Tumor cells with positive X-gal staining were quantified for colocalization with markers VIM, FSP1, and PDGFR-β of cancer-associated fibroblasts (CAF). Data represent mean values ± SD from 5 tumors. (C) Human cross sections from a patient with UC and HGD were stained for EREG and VIM (left panel) or with an antibody control (right panel) and studied by confocal laser microscopy. Scale bars: 25 μm. (D and E) Fibroblasts were purified from AOM/DSS tumors of Ereg+/– mice as specified in Methods and grown in cell culture. At day 5, cells were analyzed for α-SMA, VIM, FSP1, PDGFR-β, and VCAN by immunocytochemistry as indicated. Additionally, EREG expression was determined by X-gal staining. Scale bars: 50 μm. (F and G) Fibroblasts from AOM/DSS tumors were isolated and cultured with PBS, EREG (100 ng/ml), LPS (1000 ng/ml), LTA (1000 ng/ml), TNF-α (100 ng/ml), or IL-6 (100 ng/ml) for 6 hours. EREG expression was measured by qPCR. Data represent mean values ± SD (n = 2–3 per group). Similar results were obtained in 2 independent experiments. *P < 0.05; **P < 0.01.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts