Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Genetic mutations and mechanisms in dilated cardiomyopathy
Elizabeth M. McNally, … , Jessica R. Golbus, Megan J. Puckelwartz
Elizabeth M. McNally, … , Jessica R. Golbus, Megan J. Puckelwartz
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(1):19-26. https://doi.org/10.1172/JCI62862.
View: Text | PDF
Review Series

Genetic mutations and mechanisms in dilated cardiomyopathy

  • Text
  • PDF
Abstract

Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of congestive heart failure. In hypertrophic cardiomyopathy (HCM), cardiac output is limited by the thickened myocardium through impaired filling and outflow. Mutations in the genes encoding the thick filament components myosin heavy chain and myosin binding protein C (MYH7 and MYBPC3) together explain 75% of inherited HCMs, leading to the observation that HCM is a disease of the sarcomere. Many mutations are “private” or rare variants, often unique to families. In contrast, dilated cardiomyopathy (DCM) is far more genetically heterogeneous, with mutations in genes encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. DCM is characterized by enlarged ventricular dimensions and impaired systolic and diastolic function. Private mutations account for most DCMs, with few hotspots or recurring mutations. More than 50 single genes are linked to inherited DCM, including many genes that also link to HCM. Relatively few clinical clues guide the diagnosis of inherited DCM, but emerging evidence supports the use of genetic testing to identify those patients at risk for faster disease progression, congestive heart failure, and arrhythmia.

Authors

Elizabeth M. McNally, Jessica R. Golbus, Megan J. Puckelwartz

×

Figure 3

A view of the cardiomyocyte.

Options: View larger image (or click on image) Download as PowerPoint
A view of the cardiomyocyte.
The cytoplasm of the cardiomyocyte contains...
The cytoplasm of the cardiomyocyte contains sarcomeres, which contain thin and thick filaments. Mutations in sarcomere genes lead to HCM and DCM. Plasma membrane–associated proteins such as dystrophin and its associated proteins, the sarcoglycans, are mutated in inherited DCM associated with skeletal muscle disease. Mutations of genes encoding nuclear membrane proteins such as lamins A and C, emerin, and nesprins lead to inherited DCM due to an inappropriate transcriptional response to mechanical stress. Many of these nuclear membrane genes also induce cardiac conduction system disease.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts