Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A novel murine infection model for Shiga toxin–producing Escherichia coli
Emily M. Mallick, Megan E. McBee, Vijay K. Vanguri, Angela R. Melton-Celsa, Katherine Schlieper, Brad J. Karalius, Alison D. O’Brien, Joan R. Butterton, John M. Leong, David B. Schauer
Emily M. Mallick, Megan E. McBee, Vijay K. Vanguri, Angela R. Melton-Celsa, Katherine Schlieper, Brad J. Karalius, Alison D. O’Brien, Joan R. Butterton, John M. Leong, David B. Schauer
View: Text | PDF
Technical Advance Infectious disease

A novel murine infection model for Shiga toxin–producing Escherichia coli

  • Text
  • PDF
Abstract

Enterohemorrhagic E. coli (EHEC) is an important subset of Shiga toxin–producing (Stx-producing) E. coli (STEC), pathogens that have been implicated in outbreaks of food-borne illness and can cause intestinal and systemic disease, including severe renal damage. Upon attachment to intestinal epithelium, EHEC generates “attaching and effacing” (AE) lesions characterized by intimate attachment and actin rearrangement upon host cell binding. Stx produced in the gut transverses the intestinal epithelium, causing vascular damage that leads to systemic disease. Models of EHEC infection in conventional mice do not manifest key features of disease, such as AE lesions, intestinal damage, and systemic illness. In order to develop an infection model that better reflects the pathogenesis of this subset of STEC, we constructed an Stx-producing strain of Citrobacter rodentium, a murine AE pathogen that otherwise lacks Stx. Mice infected with Stx-producing C. rodentium developed AE lesions on the intestinal epithelium and Stx-dependent intestinal inflammatory damage. Further, the mice experienced lethal infection characterized by histopathological and functional kidney damage. The development of a murine model that encompasses AE lesion formation and Stx-mediated tissue damage will provide a new platform upon which to identify EHEC alterations of host epithelium that contribute to systemic disease.

Authors

Emily M. Mallick, Megan E. McBee, Vijay K. Vanguri, Angela R. Melton-Celsa, Katherine Schlieper, Brad J. Karalius, Alison D. O’Brien, Joan R. Butterton, John M. Leong, David B. Schauer

×

Figure 1

C. rodentium (λstx2dact) produces high levels of Shiga toxin upon prophage induction at levels comparable to EHEC isolates.

Options: View larger image (or click on image) Download as PowerPoint

C. rodentium (λstx2dact) produces high levels of Shiga toxin upon proph...
Stx2 in supernatants (S) or pellets (P) of untreated or mitomycin C–treated cultures of the indicated strains was measured by capture ELISA, and results are expressed relative to bacterial number (see Methods). ND, not detected. Cr, C. rodentium. Data shown are the averages ± SEM of quadruplicate samples. Data show results of 1 experiment representative of 3 independent experiments.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts