Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Brown adipose tissue regulates glucose homeostasis and insulin sensitivity
Kristin I. Stanford, … , Yu-Hua Tseng, Laurie J. Goodyear
Kristin I. Stanford, … , Yu-Hua Tseng, Laurie J. Goodyear
Published December 10, 2012
Citation Information: J Clin Invest. 2013;123(1):215-223. https://doi.org/10.1172/JCI62308.
View: Text | PDF
Research Article Metabolism

Brown adipose tissue regulates glucose homeostasis and insulin sensitivity

  • Text
  • PDF
Abstract

Brown adipose tissue (BAT) is known to function in the dissipation of chemical energy in response to cold or excess feeding, and also has the capacity to modulate energy balance. To test the hypothesis that BAT is fundamental to the regulation of glucose homeostasis, we transplanted BAT from male donor mice into the visceral cavity of age- and sex-matched recipient mice. By 8–12 weeks following transplantation, recipient mice had improved glucose tolerance, increased insulin sensitivity, lower body weight, decreased fat mass, and a complete reversal of high-fat diet–induced insulin resistance. Increasing the quantity of BAT transplanted into recipient mice further improved the metabolic effects of transplantation. BAT transplantation increased insulin-stimulated glucose uptake in vivo into endogenous BAT, white adipose tissue (WAT), and heart muscle but, surprisingly, not skeletal muscle. The improved metabolic profile was lost when the BAT used for transplantation was obtained from Il6–knockout mice, demonstrating that BAT-derived IL-6 is required for the profound effects of BAT transplantation on glucose homeostasis and insulin sensitivity. These findings reveal a previously under-appreciated role for BAT in glucose metabolism.

Authors

Kristin I. Stanford, Roeland J.W. Middelbeek, Kristy L. Townsend, Ding An, Eva B. Nygaard, Kristen M. Hitchcox, Kathleen R. Markan, Kazuhiro Nakano, Michael F. Hirshman, Yu-Hua Tseng, Laurie J. Goodyear

×

Figure 1

BAT transplantation improves glucose tolerance and increases whole body insulin sensitivity.

Options: View larger image (or click on image) Download as PowerPoint
BAT transplantation improves glucose tolerance and increases whole body ...
(A–C) Mice received transplants of 0.1 g BAT, a 0.15-g glass bead, or 0.1 g WAT or were sham operated. For glucose tolerance tests (GTT), mice were injected with 2 g glucose/kg body weight, i.p. (A and B) Glucose AUC and (C) GTT curve at 12 weeks after transplantation. (D) For ITTs, mice were injected with 1 U insulin/kg i.p. and data expressed as absolute glucose. Data are mean ± SEM. n = 5–8/group. *P < 0.05 between BAT-transplanted mice and all control groups.

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts